

Building Solutions

A business unit of Dow Advanced Materials Division

Air Infiltration Solutions and Products

Linda Jeng and Devin Marino Feb., 2013

Super TUFF-R" Insulation

Agenda

- □ Introduction
- □ New Construction Case Study
- □ Retrofit Case Study
- □ Air Sealing Product Study
- Demo: Products

AIR SEA

Seal out the air. Seal out energy loss.

HIGH PERFORMANCE

High performance homes bring high value, not high cost.

Current Situation

Dow Build

- Based on information from DOE, as many as 116 MM existing homes, about 500, 000 new homes each year in US need different degrees of insulation and air sealing
- U.S. Department of Energy reports air infiltration accounts for approximately 40% of a building's energy loss.
- Sealing and insulating can save up to 20% on homeowner heating/cooling costs.
- Utilities are 2nd highest monthly bill after mortgage, for middle income homeowners.

ENERGY CODE DEVELOPMENT

IECC Code Version	Zone	Wall	Ceiling	Slab	Base- ment	Crawl- space
2006	4	13	38	10@ 2 Ft.	10/13	10/13
	5	19/13+5	38	10@ 2 Ft.	10/13	10/13
	6	19/13+5	38	10@ 4 Ft.	10/13	10/13
2009	4	13	38	10@ 2 Ft.	10/13	10/13
	5	20/13+5	38	10@ 2 Ft.	10/13	10/13
	6	20/13+5	49	10@ 4 Ft.	10/13	10/13
2012	3	20/13+5	38	10@ 2 Ft.	5/13	5/13
	4	20/13+5	49	10@ 2 Ft.	10/13	10/13
	5	20/13+5	49	10@ 2 Ft.	15/19	15/19
	6	20+5/ 13+10	49	10@ 4 Ft.	15/19	15/19

Not Just for the Northern States...

- 12 home energy efficient test home (TEETH) community in Midland, MI with partner builder
- Nation's first subdivision designed to generate scientific, whole home performance data starting 2012 for a five year project
- □ Fully instrumented to monitor real whole home data 60 sensors/home!

TEETH Experimental Design — Building Solutions

Three homes built for each energy efficiency design, climate zone 5/6

Baseline HERS 82	Meet 2006 IECC lowest possible price point	Establish baseline for comparison
2012 Performance Minimum cost HERS 57	Meet 2012 IECC lowest possible price point	Collect data for this likely choice of many builders
2012 Performance Premium Package HERS 57	Meet 2012 IECC building science best practices	Show that with minimum additional up front cost, generate higher ROI through lower energy use
Beyond Code Premium Package HERS – mid 40s	Exceed 2012 IECC Renewable ready	With more significant up front cost, achieve higher ROI

TEETH Design Details

Energy Code Compliance:	2006 Prescriptive	2012 Performance 2x6	2012 Performance 2x4 ci	Beyond 2012 Performance
Design HERS	82	57	57	45
Avg Actual	78	58	54	48
Avg Measured	1,227	1,336	965	768
Avg ACH50Pa	2.8	3.1	2.2	1.8
Total con. floor	3.076	3.076	3.076	3.076
RIM & BAND JOIST				
Total R-Value of	40	40		00
RIM JOIST	19	19	(R5 CI +R16) 21	26
FOUNDATION				
Total R-Value of Basement Wall	Unfinished = R-10 continuous Finished = R-13 stud cavity	Unfinished = R-15 continuous Finished = R-19 stud cavity	Unfinished = R-15 continuous Finished = R-15 continuous	Unfinished = R-20 continuous Finished = R-20 continuous
ABOVE GRADE WALL				· · · · · · · · · · · · · · · · · · ·
Stud Dimensions	2" X 6"	2" X 6"	2" X 4"	2" X 6"
Total R-Value Above Grade Wall	19	19	21.5	41.5

9

Design **Continuous Insulation (CI) + cavity SPF helps lower** the actual blower door test result

Statistically significant at the 95% Confidence

TEETH Blower Door Testing Dow Oneway Analysis of CFM50 By Design

TEETH Tenant Feedback

New Construction Summary — Building Solutions

- Exterior continuous insulation (ci) and cavity spray foam can improve actual HERS from design
- Blower door results with "ci" and SPF are statistically better than OSB/FG at the 95% confidence level
- Do not need to go to 2x6 construction to meet 2012 IECC
- Home owners saw higher than expected utility bill with OSB/FG designs after first 6 months

Retrofit Case Study

- □ Total Size 1,500 square feet
- □ Total Rooms 2 bedrooms, 1 bath
- □ full basement.
- □ HERS Index Before Renovation: 131
- □ Blower Door Before: **2011** CFM50Pa
- Below Grade: 8" CMU (hollow core) uninsulated wall and rim joist
- Above Grade: 7/16" Fiberboard sheathing, R-11 Fiberglass Batt, 1/2" drywall
- □ Attic: R-19 batt

Dow

Sources of Air Leakages

- Examples from retrofit bungalow, 2012 "Revitalize Home" project:
- □ Roof-wall juncture:

□ Exterior Wall-Floor juncture:

Sources of Air Leakages

Building Solutions

□ Recessed Lights:

□ Interior junctions:

16

Retrofit Case Study - AFTER - Building Solutions

- Three target areas of improvement
- Blower door testing after each phase
- **Below Grade:**
 - 1.5" rigid ISO foam (R10) as internal, exposed insulation
 - 2" of spray foam class A insulation (R11) in rim joist
 - 1" XPS on exterior foundation

□ Above Grade:

- New Vinyl Siding (Med-Color)
- ➤ 1" of XPS (R5 ci)
- Air sealed windows from interior with foam sealant

□ Attic:

- 12" blown loose-fill cellulose
- Spray foam sealant and insulation around attic perimeter

Retrofit Work an	nd Results	Building Solutions
Example	Retrofit Bungalow - 1500 sqft - 1960s	Retrofit Bungalow - 1500 sqft - 1960s
Wall Construction	BEFORE	AFTER Vinyl/fiber board/batt
HERS	121	
Actual Whole House Air Leakage (ACH/50Pa)	10.6	5.1 2009 IECC
Actual Whole House Air Leakage (cfm/50Pa)	2011	811
	Basement Air Leakage Reduction (CFM50Pa)	13%
	Above Grade Air Leakage Reduction (CFM50Pa)	8%
	Attic Air Leakage Reduction (CFM50Pa)	78%

Revitalize Actual Energy Use

Renovations completed in May, 2012 First winter of monitoring heating load in Michigan

Realizing the Savings

	Peak Heating Load	Recorded Average kW per	Gas Bill (MI Consumer		
	from REMRate (kW)	day (Furnace Fan Only)	Energy by month)	Season	HDD
	Occupied	- Unoccupied	- Unoccupied		
Furnace (Before)	11.6	3.6	\$222	Feb 1 - March 30	1619
Furnace (After)	5.6	2.0	\$109	Nov 1 - Dec 30	1905
Percent Change	-51%	-45%	-51%		

Overall Results

- 35% improvement on energy efficiency score (HERs rating)
- 30% savings on monthly energy costs

33% reduction in CO2 emissions per year, significantly lowering the environmental footprint

www.revitalizehome.com

Retrofit Summary

□ Largest air leakage reduction from attic

- Easiest to retrofit below grade with insulation (inside and outside foundation wall), and air seal
- □ Hardest to retrofit above grade walls
- □ Significant improvements in energy use can be realized: ~45% furnace energy use reduction!

Cost Effective Retrofit - 2012 Building America Study

- Below grade and attic required the least labor for air sealing
- Above grade is the most labor intensive for retrofit

Reference: DOE Technical Report: Evaluation and Testing of Individual Air Sealing Retrofit Measures, CEER Team, Dec., 2012 (in peer review)

Summary: Energy Efficiency

Building Solutions

Get the walls "right" the first time

- Hardest to change after the fact
- 2x4 construction with ci can perform better than 2x6 with just cavity insulation

Seal out the air. Seal out energy loss.

□ In retrofit houses, take the time to air seal the attic

Proven Solutions

- 1. Caulks
- 2. Foam sealants
- 3. Foam gaskets sill seal
- 4. Foam sheathing "ci" installed directly on studs with taped joints
- 5. Spray foam cavity insulation

Audience Survey

Which of these air sealing techniques have you used/recommended?

- 1. Caulks
- 2. Foam sealants
- 3. Foam gaskets sill seal
- 4. Foam sheathing "ci" installed directly on studs with taped joints
- 5. Spray foam cavity insulation

Caulks vs. Sealants

- □ Which is more effective?
- □ Which is more efficient?
- □ When would you use one vs. the other?
- □ Why would you use one vs. the other?
- □ What other properties should you consider?

Call a "Friend / Expert"

Building Science consulting firm

Designed independent study

- 16 different common residential sealing applications were evaluated
 - Identical 8' x 8' wall mock-ups were constructed to standardize the details
- □ Three installers
- Evaluation Factors include:
 - Success of fill
 - Ease of Use
 - Cleanliness and Trade Disruptions
 - Weight Used / Cost

Third Party Study Methodology

- 3 identical 8'x8' wood frame mock-ups
- 2 sections in each mock-up with 16 details
- □ The details include:
 - sheathing gaps ranging from 3/32" to ½"
 - studs, windows
 - plumbing holes
 - duct penetrations
 - stud corners
 - > T-ply
 - sill plate to concrete slab

Products Compared

□ Spray foam sealant

- 12oz with straw valve attachment
- Homeowner use only

Spray foam sealant

- ➤ 20oz with Spray Gun
- Handyman and Professional use

□ Acrylic Latex Caulk Plus Silicone

- ➤ 10oz tube
- Used by homeowners, handyman and professionals

DOW

Methodology

□ Measurements – 5 categories

- Success of fill holes, trim needed
- Ease of use
- Cleanliness and trade disruption
- Weight and cost used g, ACE Hardware Store pricing
- Installation time seconds

Scoring System

- ➤ 5 points max for each category (1-5 pts)
- ➤ 5 is the best performance
- > 1 is the poorest performance
- > Add the total score from the above 5 categories

Comparative Results Window frames to rough openings:

Building Solutions

Foam preferred

Comparative Results 2" hole through OSB sheathing w/plumbing pipes:

Foam preferred

Dow Building Solutions

Foam Preferred

Comparative Results

8" hole w/ 6" sheet metal duct penetrations:

Foam preferred

Dow

Building Solutions

<u>Comparative Results</u> 1/16" wood stud gaps: Caulk Preferred

Three Stud Corner: Caulk Preferred

Wood Sill Plates to Concrete Slab Caulk Preferred

Caulk preferred with narrow gaps,~ < 1/8" and smooth finished surface is desired.

Preference by
installer
IBACOS [®]
Home Quality + Performance

	Handy	Handyman		Professional	
	Foam		Foam		
Application	Sealant	Caulk	Sealant	Caulk	
1/4" Sheathing Gap, Vertical 4'					
1/2" Sheathing Gap, Horizontal 4'					
Inconsistent Gap from tight to 1/2"					
Gap, Horizontal 4'					
Window Frame to Rough Opening					
Gap (tight on one side and 1/2" gap	Eoc	mn	rofo	rrod	
on other), 24"x36"		un p	NEIE		
Two, 2" Holes Throught OSB	6		_		
Sheathing w/ 1/2" Plumbing Pipes	TOr	lard	er		
8" Hole w/ 6" Flex Duct Penetration		0			
Throught OSB Lid	dan	SS	1/8"		
8" Hole w/ 6" Sheet Metal Duct	gup		170		
Penetration Throught OSB Lid					
Two, 2 1/2" Holes Through Top					
Plates w/2" PVC pipes					
Three. 1" Holes w/ 14/2 Romex Wires	Â				
1/16" Wood Stud to Wood Stud					
Vertical Butt Joint Gap, Vertical 8'					
1/16" to 1/2" Wood Stud to Wood					
Stud Vertical Butt Joint Gap, 8'	Cau	ılk n	rofor	'rod l	
3/32" Sheathing Gap,Horizontal 2'	Juan	m P		ICU	
1/8" Sheathing Gap, Horizontal 4'	forr				
Three Stud Corner Vertical Butt					
Seam, Vertical 8'			4 /01		
T-Ply, Used as Draftstopping	dap	S <	1/8″		
Attached to Studs, 208" of Edges	3~6	- 1	- , 🗸		
Wood Sill Plate ot Concrete Slab					
Transition, 48" of Edges				3	

Spray foam sealant

- > 12oz with straw valve attachment
- Homeowner use only

Spray foam sealant

- ➤ 20oz with Spray Gun
- Handyman and Professional use

Acrylic Latex Caulk Plus Silicone

- 10oz tube
- Used by homeowners, handyman and professionals

Today's Audience Preference

Whole House Evaluation

Building Solutions

RESIDET

Basis:

- ≻ 2200 ft²
- \succ single family,
- two-story house

□ Study based on the extrapolation of the previous mock-up results vs. actual house

□ Three scenarios were calculated:

- ➢ Foam sealant only
- ➤ Caulk only
- Combination: A combination of foam sealant and caulk using the Handyman preference

Foam vs. Caulk Whole House — Building Solutions

		Dow Great Stuff Pro®		Caulk		Combination	
	Linear ft. or Area	Cost	Time	Cost	Time	Cost	Time
 Window and door frames to rough opening gaps 	320.58 ft.	\$32.25		\$95.59		\$42.38	
 Wood stud to wood stud vertical butt joints with an average gap of 1/8" 	296 ft.	3hr 34min		6hr	24min	3hr	45min
 2° Holes through OSB sheath- ing with 1/2° plumbing pipes 	0.168 ft.2	\$0.16	5.04 min.	\$0.80	7.36 min.	\$0.16	5.04 min.
4. 8° Holes with 6° flex and metal duct penetrations	1.83 ft. ²	\$0.20	3.2 min.	\$0.76	4.4 min.	\$0.48	3.8 min.
5. 2 1/2" Holes for 2" PVC pipes through top plates	0.044 ft. ²	\$0.40	4.53 min.	\$0.08	4.47 min.	\$0.08	4.47 min.
6. 1″Holes for 14/2 Romex wire through studs	2.54 ft. ²	\$19.04	76.16 min.	\$47.60	185.64 min.	\$19.04	76.16 min.
7. Three stud corner vertical butt seams	288 ft.	\$0.72	14.4 min.	\$0.97	19.2 min.	\$0.97	19.2 min.
8. T-ply to studs and concrete slabs	34.66 ft.	\$0.16	3.9 min.	\$0.44	3.34 min.	\$0.44	3.34 min.
9. Wood sill plates to sub-floors and band joists	544 ft.	\$2.72	54.4 min.	\$10.88	38.08 min.	\$10.88	38.08 min.
IBACOS [°]		\$32.25	3:34.47	\$95.59	6:24.51	\$42.38 foam: \$26.81	3:45.26
Home Quality + Performance						caulk: \$15.57	1:47.04 40

- Use of spray foam sealant can save more than 50% in materials and be twice as fast compared with caulk alone
- Use of spray foam gun improved application precision, and required less material
- Handyman and professional installer were able to complete the job twice as fast as the homeowner with better tool and material choice

□ Meet the 2012 IECC with 2x4 walls

Get the walls "right" the first time

- Hardest to change after the fact
- 2x4 construction with ci can perform better than 2x6 with just cavity insulation
- In retrofit houses, take the time to air seal the attic

□ Below Grade retrofit, should factor in:

- Exterior foundation wall insulation
- Interior air sealing and insulation

□ Choose the product to best fit the field need

Take advantage of Professional accessories

Summary

Acknowledgement

- □ Chuck Cribley, HERS Rater, Cobblestone Homes
- Patrick O'Malley, Building Knowledge Inc. (BKI), HERS Rating and Training Provider
- □ Mark and Melissa Wahl, Cobblestone Homes
- Doug Bibee, President at Improved Habitats International, LLC
- □ Gary Parsons, Dow Building Scientist
- Brian Lieburn, Dow Residential Technology Leader
- Dan Darling, Dow Building Solutions, System Development Lab
- □ IBACOS, High Performance Home consulting services
- □ Matt Erdmann, Dow Building Solutions CTSC

Disclaimer

□ NOTICE: The data provided in this slide presentation was collected upto Feb. 2013, and is given in good faith for informational purposes only. No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

Building Solutions

Questions?

Linda Jeng, jengl@dow.com

Devin Marino, marino@dow.com

www.dowbuildingsolutions.com

