Multi-Family Above-Code Certifications in the Southeast: Real World Things You Need to Know To Do Them Right

Ray Ivy, LEED-AP
Multi-Family Technical Advisor and
Trainer, Southface

Andrew Hewitt EC QAD, Southface

Program Goals

- Increase health and safety for occupants
- Promote best-practice design and procedures
 - Designed to Earn the ENERGY STAR
- Above-code building performance
- <u>E</u>nhance building durability
- Reduce unit resource usage for life of structure (energy and water)
- Lower operating costs
- Reduce resources needed to construct

What programs are available

- LEED...
 - For Homes (Low and Mid-Rise)
 - BD + C (High-Rise)
- ENERGY STAR Low and High Rise
- EarthCraft MF
 - New Construction
 - Renovation
- Utility Rebate Programs
 - Georgia Power EarthCents/HEIP for Renovations

Types of projects

- New Construction
- Renovation
- <u>G</u>ut Rehab
- Adaptive Re-use
- Condo and Apartment
- Low, Mid and High Rise
- Affordable and Market Rate

Developer Benefits

- Design assistance
- Value engineering
- Independent third-party verification
- Technical expertise
- Performance testing
- Enhanced durability
- Reduced risk- "gold standard"

Typical Approaches to Meet Standards

- Improved air sealing of unit building enclosure
- Better duct sealing
- Enhanced insulation levels and installation quality
- Higher efficiency HVAC systems
- Better than "code" windows
- Increased % of CFL and pin-based lighting
- ENERGY STAR appliances

Team Members

- Multi-Family Developer MFD
- Technical Advisor

 TA
- General Contractor
 GC
- Trades (in order of importance)
 - HVAC
 - Insulation/air sealing
 - Framer
 - Electrician/plumber/drywall

Remember...

- Many, many details- make checklists and have Standard Operating Procedure (SOP)
- Review worksheets and program documents on a regular, scheduled basis
- Establish expectations early and often
- Make examples of early errors
- Keep your mistakes original
- Determine how to get installation information pushed down to field workers

Project Process

Pre-Construction

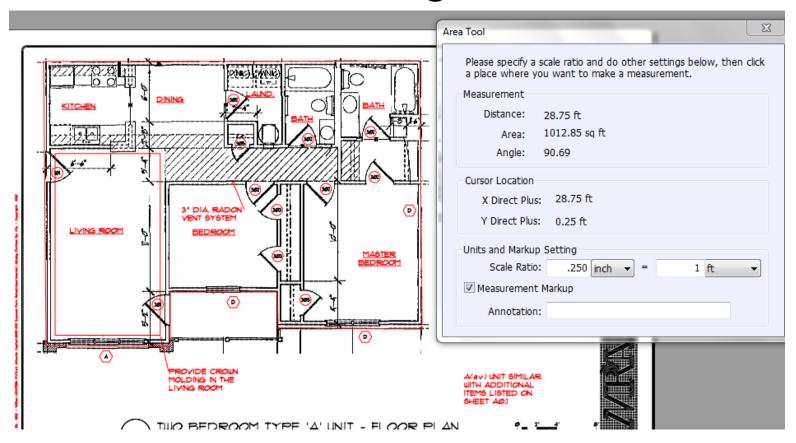
1	Project Registration
2	Project Information Submittal
3	Preliminary Energy Model(s)
4	Preliminary Energy Model(s) Report Submittal(s)
5	EarthCraft Design Review
6	EarthCraft Design Review Report Submittal

Pre-Drywall

7	Kick-Off Meeting
8	Kick-Off Meeting Report Submittal
9	Air Sealing Inspection(s)
10	Air Sealing Inspection Report Submittal(s)
11	HVAC Initial Diagnostics/Inspection(s)
12	HVAC Initial Diagnostics/Inspection Report Submittal(s)
13	Insulation Inspection(s)
14	Insulation Inspection Report Submittal(s)

Project Closeout

15	Final Inspection(s)
16	Confirmed Energy Model(s)
17	Final Inspection & Confirmed Energy Model Report Submittal(s)
18	Certification


Plans

- MF projects usually provide detailed plans
- Should have unit number and type per floor
- Start a Inspection Checklist before Design Review (per unit type):
 - Square footage
 - Perimeter
 - Volume
 - Square Footage of Building Envelope (SFBE)
- Unit square footage from plans usually inside dimensions, RESNET says use outside

- If band areas well sealed, use in volume and sfbe for all but top floor
- Helps blower door test results for small units

			nit Data	
	<u>sf</u>	perimeter	<u>volume</u>	<u>sfbe</u>
2BR-A	1000	140'		
1, 2			10500	3330
3			9000	3120
3BR-B	1200	160'		
1, 2			12600	3920
3			10800	3680
3BR-C	1240	160'		
1, 2			13020	4000
3			11160	3760
	1, 2 3 3BR-B 1, 2 3 3BR-C 1, 2	2BR-A 1000 1, 2 3 3BR-B 1200 1, 2 3 3BR-C 1240 1, 2	2BR-A 1000 140' 1, 2 3 3BR-B 1200 160' 1, 2 3 3BR-C 1240 160' 1, 2	2BR-A 1000 140' 1, 2 10500 3 9000 3BR-B 1200 160' 1, 2 12600 3 10800 3BR-C 1240 160' 1, 2 13020

- We use Foxit PDF Reader to determine perimeter (sfbe of walls) and area (volume)
- View Toolbars Drawing

- Spec Sheet
- Load Calcs (Manual J)
- Preliminary Worksheet
- Ventilation Strategy (must meet ASHRAE 62.2)
- Do a worst-case unit analysis to determine which units need energy modeling
- Create a sampling plan
- Create an Inspection Checklist

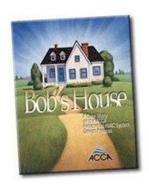
Spec Sheet

INSULATION	R-value or Inches of Foam		Insulation Type
Location Circle or explain where appropriate	Cavity	Continuous	Fiberglass, Cellulose, Open-cell foam, Closed-cell foam
Exterior Walls			
Floor over Bsmt/Crawl/Garage			
Cantilevered Floors			
Flat Ceilings			
Tray Ceilings			
Vaulted or Sloped Ceilings			
Attic Kneewalls			
Rim/Band Joists			
Poured Bsmt or Crawl Walls Specify whether int. or ext. sheathed			
Framed Bsmt Walls			
Under slab or slab edge, specify			

Note: Add section for wall framing thickness

HVAC SYSTEMS -Air handler location, Include make & model number	Unit Type 1bd, 2bd,etc	AFUE or HSPF	SEER	Capacity – Output in btu/h or tons	
				Heating	Cooling

Spec Sheet


MECHANICAL VENTILATION		On which unit types? List below.		
Fresh/outside air in	takes			
Type, circle or underline	Supply Only	Exhaust Only	Balanced	
Duct size:	Rate (CFM):	Hours/Day: Fan Watts:		
When us	ng ventilation controllers, check he	ere When using ERV/HRV,	enter specs below.	
Sensible Recovery Efficiencies (%):		Total Recovery Efficiencies (%):		

Try to get diagram of layout and specs on components to be used (vent pipe size, electrical damper, controller, etc...

Fluorescent Lighting - Unit type	% Pin-Based Fluorescent Lighting Used	% Compact Fluorescent Lighting	

Can be a big influence on MF HERS index

Load Calc Check

ES 1.0	Size	e and select all HVAC equipment in accordance with ACCA Manuals J and S:	Al
	1.	Complete load calculation with accredited ACCA Manual J 8th Edition Software or stamp by a Professional Engineer	-
	2.	Based on worst case unit orientation	-
	3.	Use 2009 ASHRAE Handbook of Fundamentals Climate Design Information for outdoor design temperatures	-
	4.	Indoor temperatures 70°F for heating and 75° for cooling	-
	5.	Base infiltration on "average"	-
	6.	Use actual area, U-factor and SHGC for windows and doors, actual area and R-values of floors, walls , and ceilings	-
	7.	Base on ASHRAE 62.2-2007 ventilation requirements	-
	8.	Cooling equipment and/or single-stage heat pump between 95%-115% (≤125 for heat pump in Climate Zone 4)	-
	9.	Provide OEM data for each unique system type	-

Load Calc Check

Design Information

Weather: Atlanta, GA, US

Winter Design Conditions

Outside db	23 °F
Inside db	70 °F
Design TD	47 °F

Heating Summary

Structure Ducts	6761 Btuh 406 Btuh
Central vent (2 cfm)	111 Btuh
Humidification	- 0 D tuh
Piping	0 Btuh
Equipment load	7277 Btuh

Infiltration

Method

Make Trade Model

Construction quality

Fireplaces		_0
	Heating	Cooling
Area (ft²)	650	650
Volume (ft³)	5850	5850
Air changes/hour	0.49	0.49
Equiv. AVF (cfm)	48	48

Heating Equipment Summary

AHRI ref	
Efficiency Heating input	0 HSPF
Heating output	0 Btuh @ 47°F
Temperature rise	0 °F
Actual air flow	585 cfm
Air flow factor	0.082 cfm/Btuh
Static pressure	0.50 in H2O
Space thermostat	

Summer Design Conditions

Outside db	91	٥F
Inside db	75	°F
Design TD	16	°F
Daily range	M	
Relative humidity	50	%
Moisture difference	38	gr/lb

Sensible Cooling Equipment Load Sizing

Structure	10460 Btuh
Ducts	628 Btuh
Central vent (2 cfm)	37 Btuh
Blower	8 Btuh
Use manufacturer's data	n
Rate/swing multiplier	0.96
Equipment sensible load	10646 Btuh

Latent Cooling Equipment Load Sizing

Structure	1196 Btuh
Ducts	54 Btuh
Central vent (2 cfm)	56 Btuh
Equipment latent load	13 00 Bt uh
Equipment total load	11952 Btuh
Req. total capacity at 0.70 SHR	1.3 ton

Cooling Equipment Summary

Make Trade Cond		
Coil		
AHRI ref Efficiency	0 SEER	
Sensible cooling Latent cooling	0	Btuh Btuh
Total cooling	Ö	Btuh
Actual air flow Air flow factor	585	ctm/Btuh
Static pressure	0.50	in H2O
Load sensible heat ratio	0.89	

Preliminary Worksheet

- Completed by developer with help from Technical Advisor (TA) and others
- First big opportunity for TA to influence design and as-built
- Keeping up with different versions of programs can be a challenge
- Have team members download latest version from the website for each project

REQUIRE	D AT	ALL LEVELS					
ES 4.0	Install exhaust fans in all bathrooms and duct to outside						
ES 4.1	Gas	kitchen range vented to exterior ≥100 cfm fan	-				
ES 4.2	Ven	tilation strategy compliant with ASHRAE 62.2-2007	-				
ES 4.3	Whe	en installed, fresh air intakes must achieve the following standards:	All				
	1.	≥10' away from exhaust outlets , vehicle idling zones, parking garages	-				
	2.	When run to soffit the duct must be extended and affixed through soffit	-				
	3.	Fresh air duct may not be run to the roof	-				
	4.	Fresh air shutoff may not be controlled by humidistat	-				
	5.	Install rigid duct with insulation	-				
	6.	All intakes must be ducted to exterior of building	-				
ES 4.4	Sea	seams of all intake and exhaust ducts with mastic	-				
ES 4.5	Duc	t clothes dryers to outside	-				
ES 4.6	No	power roof vents	-				
ES 4.7	Bac	k-draft dampers for kitchen and bathroom exhaust	-				

- ASHRAE 62.2 required by all programs
- Will be more expensive as programs start requiring testing of airflow (62.2-2010)
- Use ASHRAE 62.2-2010 Addendum j
 - Q = .03 (CFA) + 7.5 (#BR + 1)
- Whole-house is required in addition to local ventilation (kitchen and baths)
- 4.1.2 Alternative Ventilation. Other methods may be used to provide the required ventilation rates (of Tables 4.1a and 4.1b) when approved by a licensed design professional.

- What we have seen in the past:
 - Outside air with manual and electric damper only
 - -Electric damper opens when system is on, closes when system is off
 - -Lack of negative pressure in AH closet severely impacts ventilation airflow
 - -Little ventilation during shoulder seasons

- Popular current option:
 - Outside air with manual damper, electric damper and controller (AirCycler VS, Aprilaire 8126, Honeywell Y8150)

- Issues with outside air strategy with controller
 - Lack of negative pressure in AH closet still an issue
 - Uses big AH fan for small amount of ventilation air
 - Vent pipe should be insulated
 - Exterior vent location and spacing

FanTech iris manual damper

- Exhaust only
 - Usually larger, more quiet bath exhaust fan
 - Negative pressure pulls unconditioned air from largest, most available hole
 - Inexpensive to buy and operate (DC motor); run continuously
 - If quiet, occupant might not unplug it
 - Vent layout and installation is critical to airflow
 - Oversize fan to be sure of airflow

- Likely future <u>balanced</u> options:
 - OA controller coordinates with bath fan
 - AirCycler g2-k
 - OA with inline fan, coordinates with bath fan
 - Honeywell Prestige HD Comfort System
 - Panasonic WhisperComfort ERV
 - 40 cfm max with current model

- Testing ventilation airflow
 - Energy Conservatory
 Exhaust Fan Flow Meter
 - Large vane anemometer
 - Flow hood/balometer
- Who controls ventilation?
 - Unit occupant or management?
 - Accessibility of controls
 - 62.2-2010 Occupant must have accessible control

Preliminary Energy Model

- Worst-case unit analysis
 - Model each unit type on each floor, use unit with the highest HERS Index in the building
- Improvement analysis
 - Modify preliminary HERS model
 - Must do if a unit type fails to pass ES Target Index
 - If you show how to improve HERS index with minimum price increases, you show the value of your services!

Preliminary Energy Model

ENERGY STAR v2.5 Home Verification Summary

Property

Decatur Housing Authority

Decatur, GA

Weather: Atlanta, GA AWIII BLDG3 AWIII 1BR Flat btm floor MM existing specifications. blg Organization

Southface Energy Rated Homes Matt Monroe

Macc Molling

Builder Norsouth HERS

Projected Rating 9/12/2012 Rater Dr

Projected Rating: Based on Plans - Field Confirmation Required.

Building Information		Rating	
Conditioned Area (sq ft)	688	HERSIndex	84
Conditioned Volume (cubic ft)	7279	HERS I ndex w/o P V	84
Insulated Shell Area (sq ft)	1244	HERS Index Target (SAF Adjusted)	76
Number of Bedrooms	1	HERS Index of Reference Design Home	76
Housing Type	Apartment, end unit	Size Adjustment Factor	1.00
Foundation Type	Slab		

This home DOES NOT MEET the EPA's requirements for an ENERGY STAR Home.

HERS I ndex w/o PV <= HERS I ndex of Reference Design Home AND HERS I ndex <= HERS I ndex Target to comply.

Building Shell

Ceiling w/Attic None Sealed Attic None Vaulted Ceiling None P

Window Type . 36U/.30 SHGC 0**
Window U-Value: 0.360, SHGC: 0.300
Window/Wall Ratio 0.17

Preliminary Energy Model

ENERGY STAR v2.5 Home Verification Summary

Property

Decatur Housing Authority

Decatur, GA

Weather:Atlanta, GA
AWII BLDG3
AWII IBR flat btm

floor-RI-improv-15SEER HP-passes ESv2.5.ble Organization

Southface Energy Rated Homes

Builder Norsouth HERS

Projected Rating 9/12/2012 RaterID:

Projected Rating: Based on Plans - Field Confirmation Required.

Building Information		Rating	
Conditioned Area (sq ft)	688	HERSIndex	74
Conditioned Volume (cubic ft)	7279	HERS I ndex w/o PV	74
Insulated Shell Area (sq ft)	1244	HERS Index Target (SAF Adjusted)	74
Number of Bedrooms	1	HERS Index of Reference Design Home	74
Housing Type	Apartment, end unit	Size Adjustment Factor	1.00
Foundation Type	Slab		

This home MEETS OR EXCEEDS the EPA's requirements for an ENERGY STAR Home.

HERSIndex w/o PV <= HERSIndex of Reference Design Home AND HERSIndex <= HERSIndex Target to comply.

Building Shell

Ceiling w/Attic None
Sealed Attic None
Vaulted Ceiling None

Window Type .36U/.30 SHGC0***
Window U-Value: 0.360, SHGC: 0.300
Window/Wall Ratio 0.17

Sampling Plan

Project:	Ivywood F	Park										
Total Units:	106											
Buildings:	8							LEG	END			
Notes:	ECMF- 30% units per building						(Crawlspace	2			
	HEAP- 15% per floor per building: 1 unit pe					quired	Slab					
	Left Side Elevation Right Side E			Elevation			HEAP Sample Units					
	Rear	Front	Front	Rear			Additional ECMF Sample Units					
						Front	Front			Front	Front	
Building Five	528C	527B	526B	525C	518C	517B	516B	515C	508C	507B	506B	505C
30 units	524C	523B	522B	521C	514C	513B	512B	511C	504C	503B	502B	501C
9 tests=30%		530B	529B			520B	519B			510B	509B	
Building Six	606A	605A	608A	607A								
10 units	602A	601A	604A	603A								
3 tests=30%	609A			610A								

Design Review

- Critical design and planning meeting
- Discussion guided by Preliminary Worksheet and Man J
- Goals are to confirm (in order of importance)...
 - Roles and expectations
 - Communication procedures
 - Construction specs and procedures
 - Documentation and submittal timelines
 - Inspection and testing parameters
- Participants
 - TA, developer; GC, Project Manager, Site Super (if known)
 - Architect, HVAC designer, civil engineer
 - Optional: Landscape architect, trade reps (esp. HVAC, insulation and air sealing)

Design Review-Agenda

- Review
 - Documentation requirements including program forms
 - Sampling procedures (if applicable)
 - Load calcs and ventilation strategy
 - Preliminary energy model (s)
 - Set dates for Kick-off Meeting and Inspections/Testing
- Line-by-line Worksheet Review
 - Confirm project meets mandatory items and minimum point totals
- Review updated Energy Model at end of discussion if initial did not meet HERS target

Pre-Drywall Phase

- Stress importance of scheduling inspections
- Site super and trade rep should accompany TA on all inspections
- TA gives on-site verbal report to GC on issues identified during inspections
- TA submits written report to EarthCraft (EC), developer and GC within 1 day of inspections
- Any units failing an inspection must be reinspected prior to next step in process

Kick-Off Meeting

- Should occur on-site just before framing start
- Required attendees:
 - Project manager and site super(s)
 - HVAC, insulation, air sealing, framing, weather barrier trades
 - Optional but recommended: Plumber, electrician, drywall
- Review program requirements, details, techniques and expectations with GC personnel and trade project managers

Kick-Off Meeting

- Confirm unit access procedures
- Stress MRII
- Ask about required PPE
 - Hard hat
 - Safety glasses and vest
 - Boots
- Use mock-ups if possible

HVAC Initial Inspection

- Confirm 1 week in advance; reconfirm the day before; should be on Master Schedule
- Every unit
 - Visual inspection per checklist items
 - Visual inspection of 1 duct connection per system
 - Worksheet point items
- Selected units
 - Total leakage duct test on 10% of total units;
 include 1 of each unit type per floor if possible

Inspection Tools

- Review OSHA regs
- 15' tape measure
- Digital camera
- Digital tape measure
- Good flashlight with extra battery
- Drill driver with nut driver and regular bits
- Ladder- 4', 6', 8'?
- Basic hand tools

HVAC Initial Inspection

- GC QA Rep/Site Supervisor must inspect units prior to TA inspection; don't make punch lists!
- Site Super and HVAC trade rep must accompany TA on all inspections
- Review Inspection Checklist and Worksheet items
- Verbally review issues with Site Super and HVAC trade rep
- Take lots of pictures- good and bad stuff!
- Include descriptions and pictures of issues to email in written report

HVAC Initial Inspection Report

Jordan, Unit 101 had 6.5% leakage which is a bit higher than the 6% maximum we like to see for this test. Sealing the 2 piece boots might get this number below 6% if some joints are not tight now. Units 105 and 107 were under 6% (see attached Inspection Sheet).

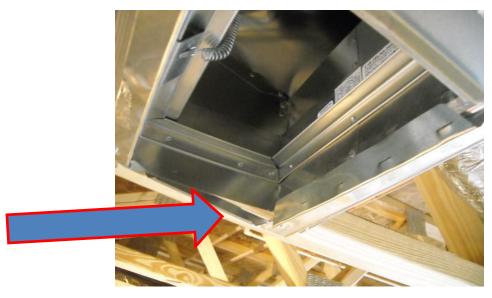
The big things we saw during the inspection were:

-Supply boots need to be taped or mastic applied at the seam where the 2 pieces snap together. One boot came apart as was checking for mastic on the liner. This has caused major air leaks in several other projects. We discussed with Ray and the HVAC installer.

An issue that will be difficult to address at this point is the poor insulation installation behind drywall in HVAC closets and showers. The pieces need to be cut to fit the stud cavities, not just crammed into place. This is Grade 3 work at best. Let's redo the insulation in the areas we can reach and focus on doing a better job on the second floor.

Duct Sealing at plenum connections; design

Alignment issues



Filthy, nasty, dirty filters (thus blower fans and coils)

- 2-piece supply boot not sealed
- Especially in attic can easily be kicked loose
- Tape or mastic seam all the way around

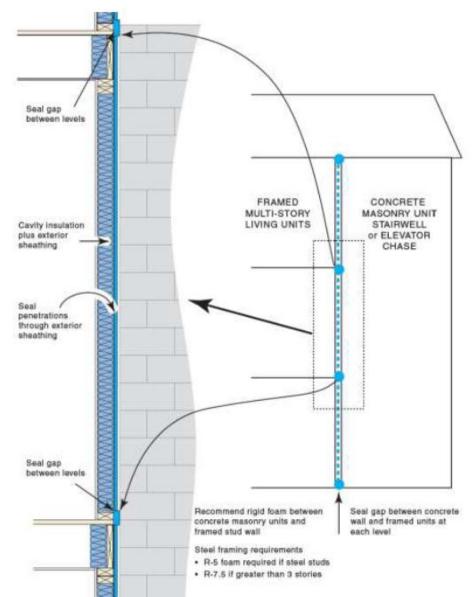
Air Sealing Inspection

- Must occur prior to insulation installation
- Confirm air sealing installation is complete and GC has inspected units to comply with EC standards before doing inspection
- Visually inspects <u>all units</u> for air sealing issues
- Have field tech present with foam gun, ladder and extra cans of foam
- Confirm air sealing items identified in Inspection Checklist and Worksheet

Exterior/Common Walls

Band/Floor Joists

Vertical chases and Bump-outs



Stairs, Elevator Shafts, Fire Rated Walls

- Back side of walls against shaft should have sealed air barrier
- Seal penetrations, perimeter and between floors

Stairs, Elevator Shafts, Fire Rated Walls

Insulation Inspection

- Must occur prior to drywall installation
- Confirm insulation installation is complete and GC has inspected units to comply with EC standards
- Visually inspect and grade insulation in <u>all</u> units
- Have field tech present ready to adjust insulation
- Confirm insulation items on Checklist and Worksheet are in compliance with program requirements
- Review any issues on-site with GC and trade rep

Batt Insulation

Foam Insulation

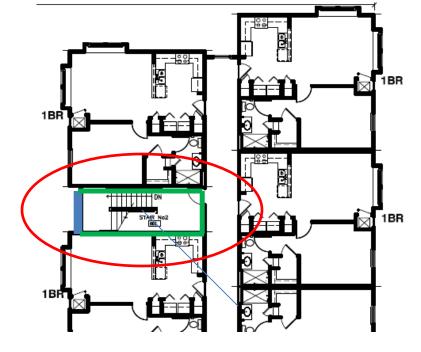
- Harder to screw up but it can be done
- Fill holes, gaps and low spots with foam gun

Blown Insulation- Walls

- Lack of bad BIBS photos is a hint...
- We have not seen blown cellulose walls yet

Kneewall Insulation

No Insulation


Insulation- Prep for Final

- Is attic ready for blown insulation?
- Are all exterior walls insulated?

Final Inspection

- All units
 - Confirm plans represent the project as constructed
 - Requirements on Inspection Checklist are fulfilled
 - Air sealing at drywall penetrations- plumbing, bath fans, supply boots, washer/dryer, can lights
 - No items confirmed as compliant during prodrywall have changed
 - Confirm model numbers and efficiencies of appliances, light and water fixtures
 - Confirm worksheet items are complete

Final Inspection

- Sampled units
 - Blower door and ducts testing of minimum 15% of total units
 - Must include 50% of units with ducts outside BE; now 100% of units for energy code compliance
 - If a unit type fails, <u>all same unit types</u> in building must be tested
 - If any of those fail, <u>all units</u> in the building shall be retested
 - Additional tests are not covered in standard scope and will add additional cost per unit tested

Insulation- Attics

Final Inspection Air Sealing Issues

- Top floor!
- Common walls



Final Inspection Air Sealing Issues

Air Sealing HVAC Closets

Final Inspection-Testing

- Pick units to be tested ahead of time
- Don't test adjacent units
- Model #s, fixture rates on 1 unit/floor

Final Inspection- Checklist

Diagnostic Testing			
Unit Information			
Unit #	704A	709A	707A
Test	Test-in	Test-in	Test-in
Туре	Α	Α	Α
Building Level	MID	SLAB	TOP
# of bedrooms	2	2	2
Sample set #			
Sample subset			
Floor Area Served	1040	1040	1040
Ceiling Height	8	8	8
Band Height	1.2	1.2	0
Perimeter	140	140	140
Volume	9568	9568	8320
SFBE	3368	3368	3200
Blower Door Test			
Ring	Α	Α	Α
Fan Pressure	59	78	48
Fan Flow	1359	1560	1227
ELR (CFM50/SFBE	0.40	0.46	0.38
ACH50 (CFM50x60/Volume)	8.52	9.78	8.85
PASS			

Visual inspection

Data entered before Design Review

Data entered during testing

Final Inspection

- 1 All fixtures and receptacle penetrations through drywall sealed on all floors (walls and ceilings)*
- 2 Bath fan penetrations through drywall sealed on all floors (walls and ceilings)
- 3 All plumbing penetrations through drywall sealed**
- 4 All drywall penetrations associated with washer/dryer sealed
- 5 HVAC boot penetrations through drywall sealed on all floors (walls and ceilings)
- 6 HVAC boots sealed to subfloor (if applicable)
- 7 Recessed can lights air-tight and sealed to drywall
- To include all drywall penetrations in exterior walls, tenant separation varieties, corridors, stairwells, elevator shafts, etc.
- **Penetrations around the edges of fire sprinkler systems may be exempt

Confirmed Energy Model

- Revise energy model to reflect as-built
 - Enter BD and DB data
- Record final HERS Index
- Develop options if issues arise

Documentation

- Gather as early in the process as possible
- Ask GC to create an EC folder on their FTP site which all partners can access
- GC should add documentation on specific point items to FTP site
- Stress photo documentation by GC to minimize trips
- TA should take bunches of pictures

Questions?

Ray Ivy, <u>rivy@southface.org</u>

Andrew Hewett, <u>ahewett@southface.org</u>