Measuring Air Leakage in High Rise Buildings Denali Jones Retrotec Energy Ltd

Contents

- Cause
- Problems
- Sites
- Benefits
- Ventilation
- Air barriers
- Locate and seal leaks
- Measure leaks
- Case Studies

Cause of air leakage

Stack Pressure + Holes = Leaks

Primary Boundaries for cold climates

14 windows open at -25 C

inset shows open window

Why air tightness is important?

Airtightness defines a building

Benefits of airtightness 1

Impact on energy cost

CFM 75/ft ²		
0.1	0%	Negligible
0.25	5%	Small
0.4	10%	Moderate
1.0	25%	Large
2.0	40%	Uncontrolled, severe

7x more exposure in a house = more energy per person

Real problems

Typical Leaky High-Rise Buildings:

Cool wall temperatures causes mold

Smoke safety is affected by floor to floor leakage

Hallway mechanicals cannot keep up with flow requirements

Reduce noise from <u>outdoors</u>

Benefits of airtightness 7

Reduced entry of hot humid air

Whirlybirdlor VentilationRidge

HEAT FLOW

Radiant Heat

Heat Transfer

through untreated roof

Reflective Insulation Vs. Roof Ventilation By merely venting a hot roof, you are re-circulating the air that is continually re-heated by the hot roofing iron, baking in the sun.

Alternatively, to cool the iron down altogether at the outside, by reflecting a majority of the suns radiation, provides an effective cooling solution to a building heated by radiation.

It is also less effective to insulate on the inside as conventional methods do, by attempting to block the heat transfer from the very hot iron.

The answer is to remove the problem of the hot iron all together, with a Heat Reflective Coating on your roof.

Benefits of airtightness 3

Disconnect Floors

Improved Air tightness in Elevator Shafts

To determine pass/fail for new construction

hall pass ...0.25 CFM/sq ft ...at 75 Pa ..."

=1.0 liters/s @ 50 Pa /m²

US Army Corps of Engineers® Engineer Research and Development Center

Why air leakage is measured 1

Standards for air leakage – pass/fail

US Army Corps of Engineers®

Standards for air leakage 1

Required House tightness?

Standard	Requirement	CFM75/ ft ²
LEED	1.25 in ² EfLA @ 4 Pa / 100 ft ²	0.30
2009 IECC	7.0 ACH50	0.55
2012 IECC	3.0 ACH50	0.25
Cdn R-2000	1.5 ACH50	0.13
Passiv Haus	0.6 ACH50	0.05

Large Bldg tightness?

4 story k	CFM75 / ft ²		
USA	ASHRAE 90.1 Leaky		0.60
France		1.2 m³/m³/h @4Pa /m²	0.44
USA	IECC, Washington State		0.40
Russia		1.5 I/s @50Pa /m²	0.385
UK	TS-1Commercial, Best	5 m³/h @50Pa /m²	0.36
USA	ASHRAE 90.1 Average		0.30
USA	USACE, IGCC		0.25
UK	TS-1Commercial Tight	2 m ³ /m ³ /h @50Pa /m ²	0.14
USA	ASHRAE 90.1 Tight		0.10

Air leakage is measured to determine weatherization effectiveness

Dual Channel Digital Micromanometer and Control

Why air leakage is measured 2

Air leakage is measured to run predictive models

	CONTAMW2 - HO	DUSE.prj		_ 🗆 🗙
	<u>Eile E</u> dit ⊻iew <u>L</u> e	vel <u>T</u> ools <u>D</u> ata <u>W</u> e	eather <u>S</u> imulation <u>H</u> elp	
			<u>및 많 많</u>	
* ASTM 2010-06-04 1751.xml - Retrotec FanTestic (5.1.8) File View Sets Tools Help				Ē
Infiltration Effects Climate location Select climate Climate Data Heat	3			
# of stories Heating cost /kwh % Winter: design				•
Bedrooms Cooling cost \$/kwh Si Summer: design				4
Occupants Shelter class Select shelter ation c Heat			ļĮ	
Automatic save of 'ASTM 2010-06-04 1751.xml' completed at 2010-08-31 13:17.			* •	
				*
	\$ *			
16				
		<u> </u>		- -
				T
	•	-		
State Internet	Zone: Ambt	Col 1, Row 1	Level grnd: 2 of 4	//.

Why air leakage is measured 3

Recommendations

- Assemblies-0.01 cfm /ft2 @75
- Walls 0.1 cfm /ft2 @75
- Slabs 0.01 cfm /ft2 @75
- Paint all block walls
- Seal all shafts at each floor
- Enclose elevator lobbies from slab to slab
- Electronic exhaust fan & fire dampers

Locate and seal leaks

Locate leaks with door fan using smoke, infrared, hand

Door fan finds leaks

Door fans and infrared camera

Exterior wall leaks

Typical air leakage sites 4

Smoke Testing Used to Confirm Air Barrier Discontinuity

Why air leakage is measured 4

Sealing air leaks

Steel deck to masonry wall:

Seal using two-part polyurethane foam. Deck flutes perpendicular to wall to be punched and foam injected adjacent to wall. Space between flutes also to be foamed.

Can lights:

Box with drywall within attic. Use two-part polyurethane foam to seal box seams and to hold it together.

Access hatches: Weatherstrip access hatches using closed-cell neoprene gasket.

Remove covers of mechanical equipment. Foam gap between ducting and kerb. Tidy up mechanical louvers and linkage.

Roof penetrations:

Measure leaks

Door-Fan components anel + calibrated fan +gauges

Seal these

Open interior doors

Setting up the test fans

What components of buildings can be measured?

Whole building envelopes can be measured

Building components that can be measured 1

Individual apartments can be measured

Building components that can be measured 2

Hallways can be measured

Stairwells can be measured

Building components that can be measured 4

Floor to floor leakage can be measured

Building components that can be measured 5

Total Unit Leakage - All 6 Sides, 1 Door Fan

Measure Entire Envelope

otal Unit Leakage - All 6 Sides, 1 Door Fan

Top Down View

Leakage from Apartment to Hallway

Leakage across 1st Party Wall

-eakage across 2nd Party Wall

Slab leakage – total floor leakage

Pressurizing the Floor Above

Floor to floor leakage can be measured

Elevator shafts can be measured

Building components that can be measured 6

Case Studies

Air leakage Test Protocol for U.S. Army Corps Buildings

Requirements

- Proper design
- Plan review
- Ongoing inspection
- Mock up building materials
- Pass air leakage protocol
 - easy
 - not just the ASTM E779 standard

Guiness World Record 15,000,000 cubic feet

allenumfang = 1,2 km

Real life test: BTC

South Carolina, USA

- Envelope A = 136,820ft²
- 0.08 CFM/ft² @ 75Pa

Real life test: Retrotec

Vancouver, Canada

- Envelope Area = 25,000 ft
- 0.4 CFM/ft² @ 75Pa
- 7.3 m³/h/m²

EN13829 2010-01-21 0909.xml - Retrotec FanTestic (0.9.62)															
Building Air Leakage Test In compliance with European Norm EN13829 Retrotec FanTestic, version 0.9.62 License# Free Beta Version															
Test technikian #1 Door Fan Model Retroter D1700 V S/N 0 Gau										Select Building Image					
Tim Lochner															
Building Address 1639 West 2nd Ave - Unit Vancouver, BC Canada V6J1H3	330	Bu	Height of	f Building at ure to wind	Elevation bove ground A: Highly	protected	m m I buildi	Volume, V 500 m ³ Total envelope area, AT I 480 m ³ Floor area, AF 120 m ³							
Accuracy of building measurements 5 %									n set						
Barometric press 101 kPa from Stand. temp. and pressure V Wind speed (Beaufort) 0: Calm V Operator loc Insid Take 12 bias pressures for 10 sec each. Take 12 building pressures from 15 to 70 Temperatu indoors 20 sc outdoors 2									nside 💌						
Start Autotest			al s	how Graph	15			<u> </u>							
Bias pressur	e, initial [Pa]	.02	109	033	.025	164	112	103	143	11	.018	131	066		
Bia Average ΔF	-0.076	ΔP ₀₁ 0	-20.9	ΔP ₀₁ + 0.	-30.4	-35.8	-40.1	-45.3	-40.9	-55.1	-59.7	-64.8	-69.4		
		113.1	153.6	187.5	217.2	253.8	284.5	310.1	351.0	301.8	425	461.6	496.2		
Door Pan I Kang	e Low •	113.1	153.0	107.5	217.2	255.0	201.5	319.1	351.9	391.0	425	401.0	490.2		
Door Fan 1 Rang	* <u>*</u>	113.1	153.6	187.5	217.2	253.8	284.5	319.1	351.9	391.8	425	461.6	496.2		
Bias pressu	re, final (Pa)	694	099	118	032	374	413		03	159	13	136	.012		
Bias (ΔP ₀₂ -0.181 ΔP ₀₂ -		ΔP ₆₂₋ -0	36.3	40.7	44.2	48.3	51.4	Temperat	57.8	61.2	°C 0	66.6	20 °C		
Total flow, Vr [m3/h] 30.3			36	41	44	48	52	55	58	61	64	67	69		
Error re-1 -0.420		-0.42%	0.34%	0.57%	-0.14%	-0.15%	-0.06%	-0.21%	-0.19%	0.19%	0.14%	-0.05%	-0.02%		
L	2101 [90]	0.12.10							1			Results	Uncertainty		
Correlation, r [96		Galculate						Air flow at 50Pa, V ₅₀ [m ³ /h] 58 +/-109							
Intercept, Cenv [m*/h.Pan	Intercept, Cenv [m*/h,Pan] 7.1 7.0 7.2				u concurate						Air changes at 50 Pa, n ₅₀ [/h] .12 +/-				
Intercept, CL [mª/h.Pan	7.1 7	.0 7.2			Clear data				Air fi	Air flow at 4 Pa, V ₄ [m ³ /h]			+/-10%		
Slope, n	0.537 0.5	533 0.541			Delete set	:		P	Permeability at 4 Pa, Q4 [m ^s /h.m ²]				+/-11%		
		New set Effe						fective leakage area at 4 Pa, AL [cm ²] 16 +/-10%							
Finish time 09:59															
(add notes here)															
Automatic save of 'EN13829 2010-01-21 0909.xml" completed at 2010-01-21 09:59.															

Cover fans before taking bias readings? O Yes O No

Previous step:

Current step:

Next step:

Step 2: Flow pressure at 12 points, -15 Pa, -20 Pa, -25 Pa, Step 3: Bias Pressure. 12 points, averaged from data -30 Pa, -35 Pa, -40 Pa, -45 Pa, -50 Pa, -55 Pa, -60 Pa, -65 collected over 10 seconds (minimum 10 readings) Pa, -70 Pa, each point collected for 20 seconds (minimum 20 readings).

1 DM2 gauge found. Gauge #201653 on Retrotec DU200, Range Low. Gauges ready. Click start when read to start autotest.

Imbalanced flow can be caused by individual set points.

Individual set point *between zones Common set point within a zone.*

Colin Genge

through Door Panel

through Door Panel

through Door Panel

	Start date 2010-06-02	Start time	19:37	🙆 Get Time	Pressurization set)							
Average wind speed 8 mph			Direction WN		Operator location Inside 🔻)	Temperature, initial			indoors 75 °F outdoors 87 °F		
Start Auto-Test	M Show Graphs												
	Bias pressure, init	ial [Pa] .727	1.093	1.227	.649	.81	1.129	1.223	.881	.843	1.284	.971	1.011
									Greatest I	initial Bias Pressure	1.284 _{Pa}	Time per Bias Pressure	10 sec.
#1 Building (gauge) pressure [Pa]		ire [Pa] 25.1	28.9	33.9	38.0	43.0	47.0	52.0	55.6	60.9	65.0	69.9	75.1
#2 Building pressure variation [%]		ion [%] 2.1%	2.4%	2.3%	2%	1.9%	2.1%	2.3%	2.1%	3%	%	.1%	.1%
#3 Building pressure variation [%]		ion [96] 3%	3.1%	3.3%	3%	2.8%	3%	2.9%	2.8%	1.4%	1.5%	1.2%	1.3%
#4 Building pressure variation [%]		ion [%] 2.6%	2.5%	2.7%	2.1%	1.7%	2.1%	2.2%	1.8%	1.8%	2%	1.8%	1.7%
	#5 Building pressure variati	ion [%] -1.4%	-1.1%	7%	8%	9%	8%	7%	-1%	-3%	-2.7%	-3.1%	-3%
	#6 Building pressure variati	ion [%] - .5%	5%	2%	1%	1%	1%	1%	1%	-2.8%	-2.3%	-2.6%	-2.8%
÷×	Door Fan 1 🗸	▼ [Pa] 88.9	109.2	131.2	152.7	167.6	189.8	212.8	237.0				
₽×	Door Fan 2 🗸 🔺	▼ [Pa] 75.9	93.6	116.9	136.8	160.7	181.5	206.5	227.1				
• ×	Door Fan 3 🔻 🗛	▼ [Pa] 91.1	108.3	134.4	155.3	176.8	194.8	217.0	227.7				
© ×	Door Fan 4 🗸 🗛	▼ [Pa] 98.4	114.5	138.3	158.1	180.3	200.0	224.0	242.2				
© ×	Door Fan 5 🔻 🗛	▼ [Pa] 71.6	89.3	111.7	129.7	152.2	171.2	196.0	215.4	115.6	126.4	140.4	155.5
© ×	Door Fan 6 🗸 🗛	▼ [Pa] 87.5	107.7	138.5	163.0	193.9	222.2	262.4	309.0				
© ×	Door Fan 1 🗸 Open(22)	▼ [Pa]								68.8	74.3	80.5	88.2
© ×	Door Fan 2 🗸 Open(22)	▼ [Pa]								62.9	68.2	77.2	84.1
© ×	Door Fan 4 🗸 Open(22)	▼ [Pa]								63.3	68.0	75.1	82.4
¢ ×	Door Fan 5 🔻 Open(22)	▼ [Pa]											
• ×	Door Fan 6 🔻 Open(22)	▼ [Pa]								105.6	118.5	133.4	148.7
\$ X	Door Fan 3 🔻 Open(22)	▼ [Pa]								70.7	77.5	85.5	93.5
											ті	ime per Building Pressure	20 sec.
	Bias pressure, fir	nal [Pa] .206	.224	.345	018	038	17	149	.234	.132	.236	.129	.381
									Temperature, final		indoor	s 75 °F outdo	oors 87 °F

Types of door fan tests 3

Questions? Comments? Angry rants?