Advanced Studies in Unvented Attics

2013 RESNET Conference February 27, 2013

> John Broniek P. Eng Senior Engineer

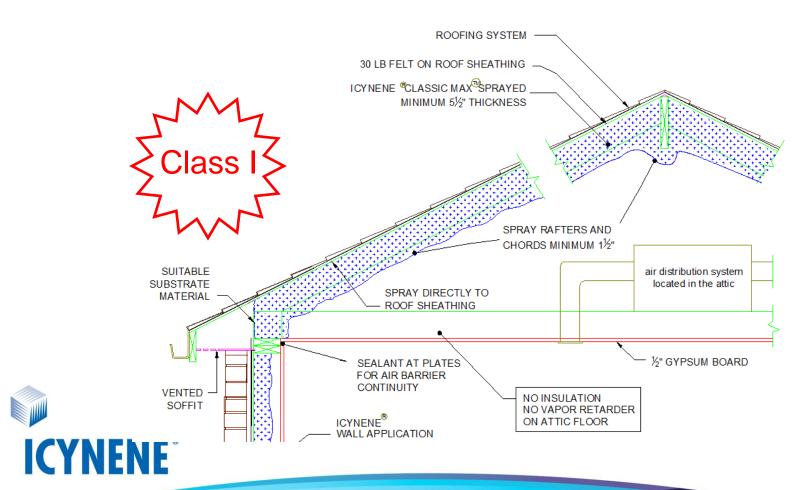
Presentation Overview

- Brief Introduction to Icynene
- 2. Unvented/Sealed Attic Background & Research
- 3. Cost Savings, Energy Efficiency and HVAC Benefits for Builders
- 4. Unvented Attic Application Details

Icynene Spray Foam Insulation

- Around for 26 Years
- 350,000 Projects
- Classic Max[™] Low density open cell, ½ lb. foam
- MD-C-200[™] Medium density closed cell, 2 lb. foam
- Renewable-based & recycled content spray foams
- ICC-ES Evaluation Reports
- 16 Year History in Unvented Attics

Icynene = Air Barrier and Insulation in One System


Icynene Low Density Insulation is Unique for Unvented Attics

An ignition barrier can be a fire protective coating designed to inhibit or prevent the start and spread of fire from a spark or direct heat on the spray foam surface.

Spray at Interior Surface of Roof Sheathing & Attic Walls

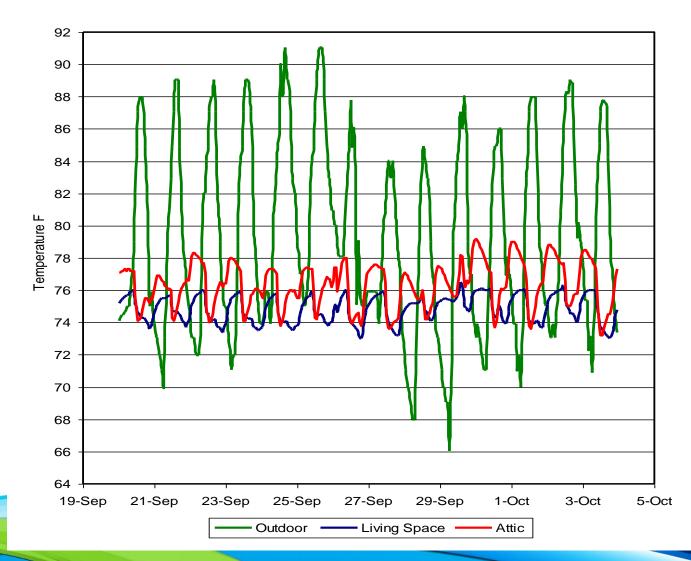
Why Have an Unvented Attic?

- Air handlers & ducts operate more efficiently in a more temperate, partially conditioned space
- Energy savings & improved comfort for occupants due to greater building airtightness
- Lower HERS Scores resulting from energy savings
- Potential for wind uplift on sheathing may be reduced since the soffit and ridge vents are no longer allowing pressure gradient within the attic
- Penetrations through the ceiling (below the attic) do not compromise the building envelope air tightness

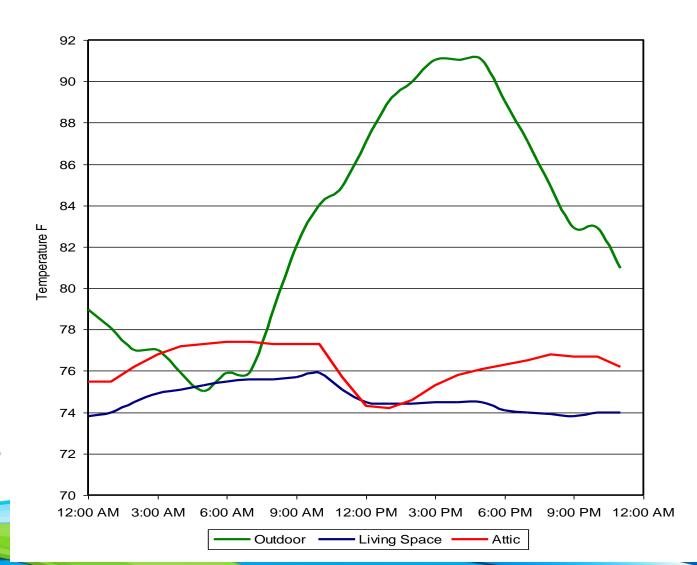
 Eliminates condensation on cool duct and ceiling drywall surfaces (vented attic dew point up to 85° F)

Research on Unvented Attics Temperature and Relative Humidity Levels

- Study by IBACOS as part of US DOE Building America Program research
- Unvented attic in house in Orlando Florida
- Studied in 2006 & 2007

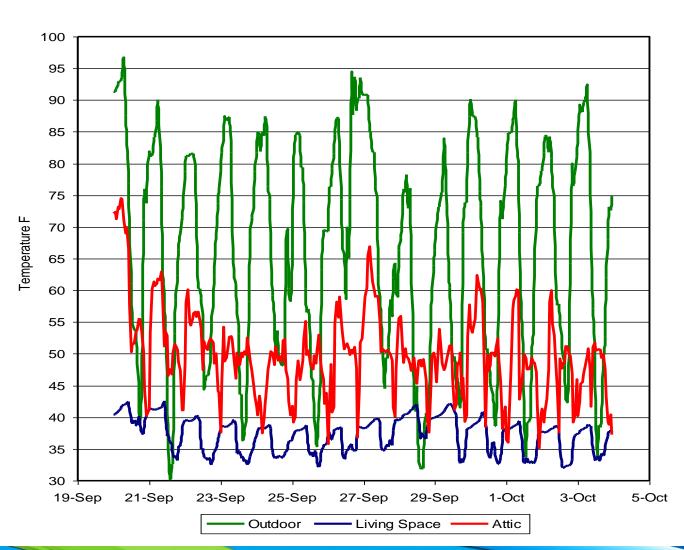


Temperature Measurement

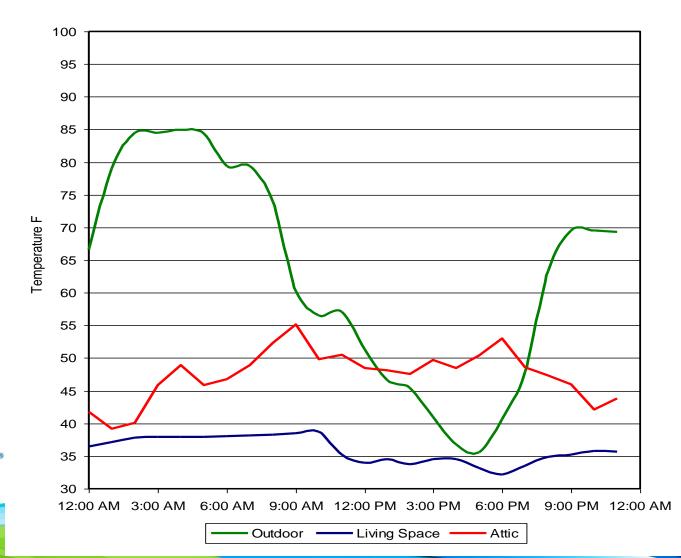

Unvented Attic Temperatures over Two Week Period

Unvented Attic Temp Avg = 76.3F

Unvented Attic Temperatures on Hottest Day

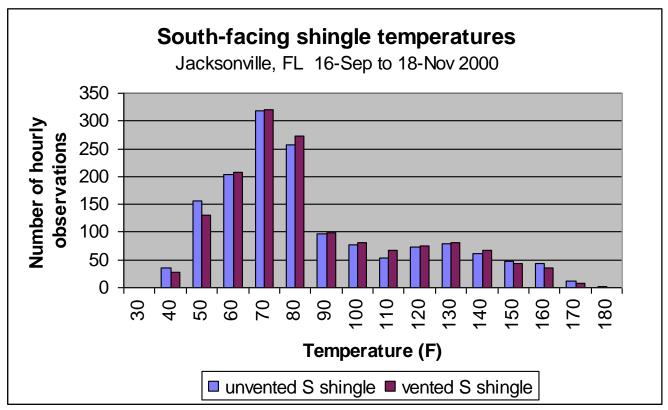


Relative Humidity over Same Two Week Period


Unvented Attic RH Avg = 50.0%

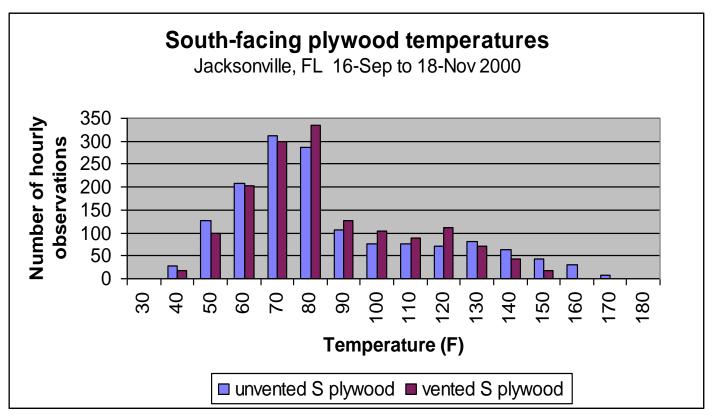
Dew Point Avg = 56.3F

Relative Humidity on Hottest Day


Unvented Attic & Shingles

Composition Shingles:

- Studies have shown only a 1-3 degree increase in roof sheathing temperatures with unvented roofs above those with vented roofs
- Numerous other studies have shown that unvented attics do not cause shingle failure
- Shingle color is the key factor in deterioration
- Elk, GAF, CertainTeed offer warranties for asphalt shingles applied over unvented attic assemblies with air-impermeable insulation



Vented vs. Unvented Attic & Shingle Temperatures

Vented vs. Unvented Attic & Sheathing Temperatures

ICYNENE°

Unvented Attics in the Code since 2007

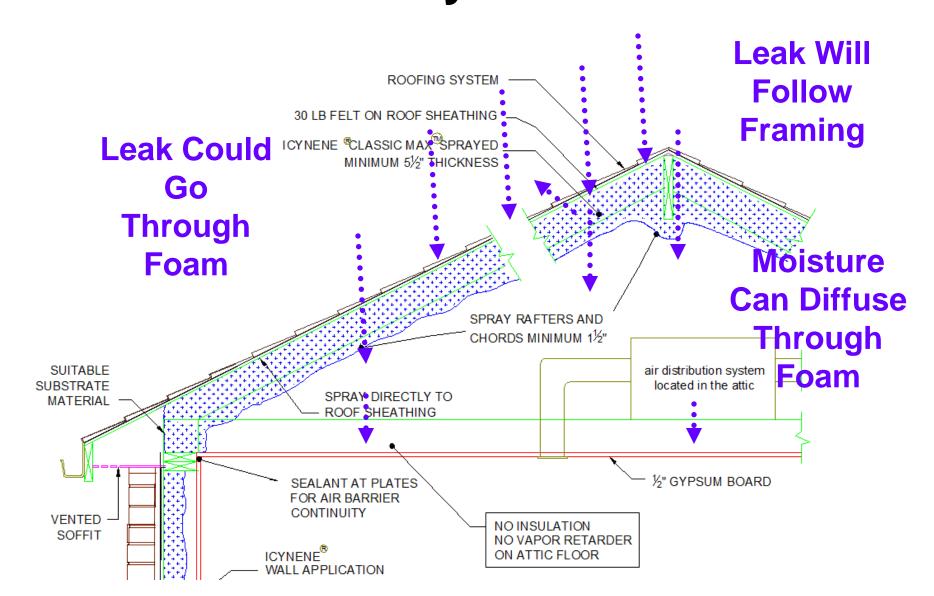
R806.5 Unvented attic and unvented enclosed rafter assemblies. Unvented attic assemblies (spaces between the ceiling joists of the top story and the roof rafters) and unvented enclosed rafter assemblies (spaces between ceilings that are applied directly to the underside of roof framing members/rafters and the structural roof sheathing at the top of the roof framing members/rafters) shall be permitted if all the following conditions are met:

1.	The	unvented	attic	space	is	completely	contained
	with	in the <i>buila</i>	ling th	ermal e	enve	elope.	

- No interior Class I vapor retarders are installed on the ceiling side (attic floor) of the unvented attic assembly or on the ceiling side of the unvented enclosed rafter assembly.
- Where wood shingles or shakes are used, a minimum ¼inch (6 mm) vented air space separates the shingles or shakes and the roofing underlayment above the structural sheathing.
- 4. In Climate Zones 5, 6, 7 and 8, any air-impermeable insulation shall be a Class II vapor retarder, or shall have a Class III vapor retarder coating or covering in direct contact with the underside of the insulation.
- Either Items 5.1, 5.2 or 5.3 shall be met, depending on the air permeability of the insulation directly under the structural roof sheathing.
 - 5.1. Air-impermeable insulation only. Insulation shall be applied in direct contact with the underside of the structural roof sheathing.
 - 5.2. Air-permeable insulation only. In addition to

5	R-20
6	R-25
7	R-30
8	R-35

 Contributes to but does not supersede the requirements in Section N1103.2.1.


SECTION R807 ATTIC ACCESS

R807.1 Attic access. Buildings with combustible ceiling or roof construction shall have an *attic* access opening to *attic* areas that exceed 30 square feet (2.8 m²) and have a vertical height of 30 inches (762 mm) or greater. The vertical height shall be measured from the top of the ceiling framing members to the underside of the roof framing members.

The rough-framed opening shall not be less than 22 inches by 30 inches (559 mm by 762 mm) and shall be located in a hallway or other readily accessible location. When located in a wall, the opening shall be a minimum of 22 inches wide by 30 inches high (559 mm wide by 762 mm high). When the access is located in a ceiling, minimum unobstructed headroom in the attic space shall be 30 inches (762 mm) at some point above the access measured vertically from the bottom of ceiling framing members. See Section M1305.1.3 for access requirements where mechanical equipment is located in attics.

Roof Leaks, Moisture and Icynene Low Density Foam

Benefit – Building Airtightness Enhanced

- Blower door test values usually between 1.5 & 4.0 ACH50
- Building airtightness level varies depending if only unvented attic is sprayed or if balance of building walls, floors etc are sprayed too
- Energy code and Energy Star compliance target levels routinely met – peace of mind for builders

The Impact on Building Envelope & Mechanical Systems

- Well-insulated, airtight attics and buildings result and require
 - Smaller heating/cooling systems
 - Mechanical ventilation

The Impact on Building Envelope & Mechanical Systems

- Smaller "right sized" HVAC reduces system costs
 - Lower equipment cost at approximately \$500 per ton, this will vary depending on house location and the SEER rating of the AC unit.
 - Increased moisture removal, providing increased comfort level during the cooling season and reducing the potential for moisture buildup in the structure
 - Reduces short cycling (improved efficiency) which reduces wear and increases the life of the fan motor and compressor
- Tightness of envelope improves evenness of heat transfer thereby reducing hot/cold spots

Duct Sizes Can Be Reduced

HVAC Load Calculation Example

ANALYSIS								
Client Name.	D. I	R. Horton						
Client City:	Birr	mingham, AL						
Client Comment:	Per	Tim Comsto	ck-lcynene					
Company Name: Advanced Design Systems Company Representative: Lewis Cooley Company Address: 3 Holland East Court								
Company City:	Sim	psonville, 30	29681.5817					
Company Phone:	864	.270.5727						
Company Fax:	854	963.2978						
Company E-Mall Ad	idress: leci	ooley@charte	r.net					
Company Commen	t: Ave	erage infiltration	on					
Design Data								1
Reference City:			Birming	ham, Alabam	3			10
Building Orientation	E			or faces East				
Dally Temperature	Range:		Medium					
Latitude:			33 Degrees	5				
Elevation:		-	520 🕏					
Altitude Factor:		0.5	978					
	Outdoor	Outdoor	Outdoor	Indoor	Indoor	Grains		
	Dry Bulb	Wet Bulb	Rel.Hum.	Rel.Hum.	Dry Bulb	Difference		
Winter:	21	19.48	80%	n/a	70	n/a		
Bummer:	94	75	42%	50%	75	37		
Check Figures]
Total Building Supp	ly CFM:		1.009	CFM P	er Square ft.		0.726	
Square ft. of Room Volume (ft ²) of Conc			2,491	Square	ft. Per Ton:		682	
Building Loads			**************************************					1
Total Heating Requ	ired including	Ventilation Air	50,8	821 Bluh	50.821	MBH		-
Total Sensible Gain	C		38.5	907 Bluh	89	%	_ \	Tor
Total Latent Gain:			4.5	946 Btuh	11	No.		IUI
rosai Lasent Gain.								

Icynene Unvented Attic Saved 1 Ton

Project Comment: Foam in roof deck (sealed attic, walls, floor slab on grade D. R. Horton Client Name: Client City: Birmingham, AL Client Comment: Per Tim Comstock-Icynene Company Name: Advanced Design Bystems Company Representative: Lewis Copley Company Address: 3 Holland East Court Simpsonville, SC 29581.5817 Company City: Company Phone: 864.270.5727 864.963.2978 Company Fax: Company E-Mall Address: lecooley@charter.net Company Comment: 0.1 ac/n-n Design Data Reference City: Birmingham, Alabama Building Orientation: Front door faces East Dally Temperature Range: Medium Latitude: 33 Degrees Elevation: 620 1 Altitude Factor 0.978 Outdoor Outdoor Outdoor Indoor Indoor Grains. Dry Bulb Wet Bulb Rel.Hum Rel.Hum Dry Bub Difference Winter 19.48 80% n/a n/a Summer: 75 42% 50% 75 37 CFM Per Square ft.: Total Building Supply CFM: 1.700 0.682 Square ft. of Room Area: Square ft. Per Ton: 2.491 936 24,677 Volume (#2) of Cond. Space: Building Loads Total Heating Required Including Ventilation Air: 35.328 Bluin 35.328 MBH Total Sensible Gain: 28.845 Btuh

3.087 Bluth

31,932 Btuh

2.66 Tons (Based On Sensible

Total Latent Gain:

Total Cooling Required Including Ventilation Air.

Builder Cost Savings Example

- Elimination of Ridge Vent; Save \$100
- Right-Size HVAC (1 ton to 1½ ton reduction); Save \$750+
- Solid Soffit vs Vented Soffit; Save \$50
- Eliminate Attic Floor Insulation; Save \$800
- No High Heel Trusses; Save \$200

2009 IECC Energy Code & Energy Star Requirements:

- 402.2.3 Attic access. Require weather-stripping & insulation to surrounding insulation level. Save \$300
- 402.4.1 Building thermal envelope. All penetrations in the envelope must be air-sealed. Save \$400
- 402.4.2.1 Building Envelope Testing for Energy Star. Blower door tested air leakage needs to be <5 or 6 ACH50. PRICELESS (failing test is extremely expensive)

Builder Cost Savings Example

- 402.4.5 Recessed lighting. Must be sealed, air-tight and IC-Rated.
 Save \$100
- 403.2.1 Duct insulation. Supply ducts in attics must be insulated to R-8 and return ducts to R-6 unless they are considered inside conditioned space. Save \$150
- 403.2.2 Duct testing. Ducts located inside the thermal envelope do not have to be tested. Save \$150
- 402.2.1.1 Wind wash baffle and air-permeable insulation dam.
 Unvented attics do not need baffles. Save \$150

Other Possibilities:

- Radiant barrier elimination. Save \$400
- Duct downsizing savings. Save \$150

→ \$3,700 in Potential Deductions

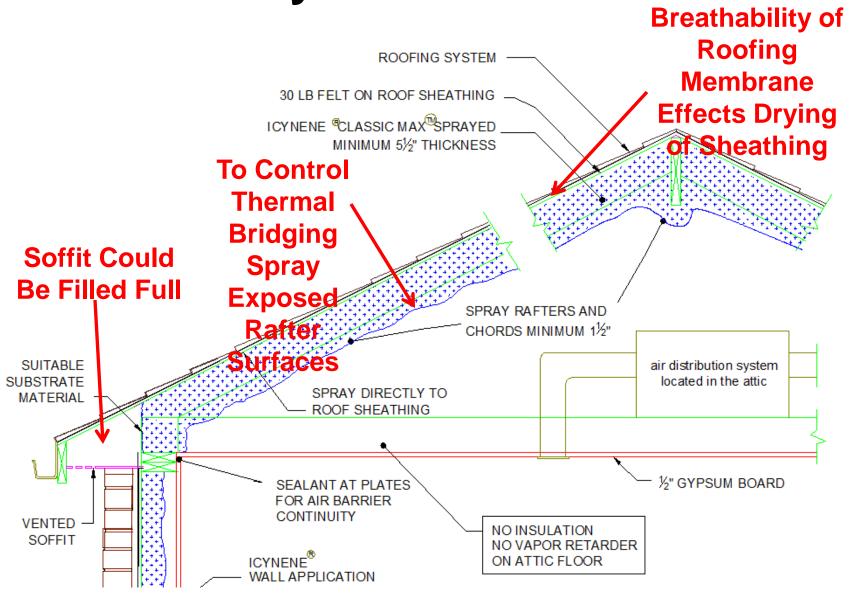
The Effect of the Performance Path in Meeting the Energy Code

Prescriptive Values							
Zone	Ceiling	Main Walls	Floors	Crawl			
				Space			
				Walls			
3	30	13	19	5/13			
Typical Performance Values with Icynene							
Zone	Unvented	Main Walls	Floors	Crawl			
	Attic			Space			
				Walls			
3	20	13	13	5			

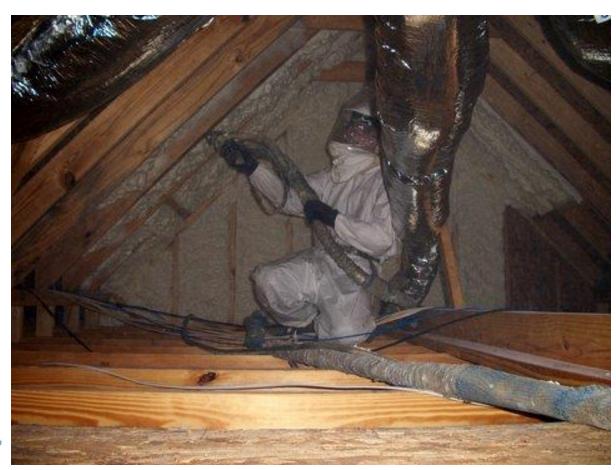
Location Effects Whether LD or MD is Preferred Choice

- Per Code, houses in Southern Climates (Zones 1 to 4) do not require the spray foam insulation to be a vapor retarder or have a vapor retarder coating
- Low density spray foam favored in Southern
 Climates

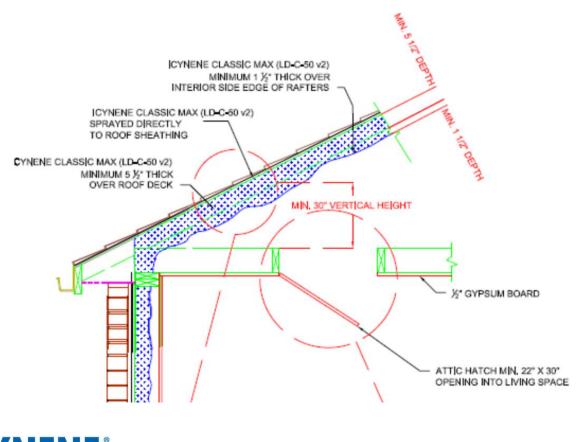
Houses Being Built in Savannah with Unvented Attics are Typical SE Houses


Application Considerations for Builders

- Some builders choose to only use spray foam for unvented attic application an important step in building energy efficient houses
- Complete spray foam application = greater airtightness, HERS score, energy savings and occupant comfort benefits could be realized

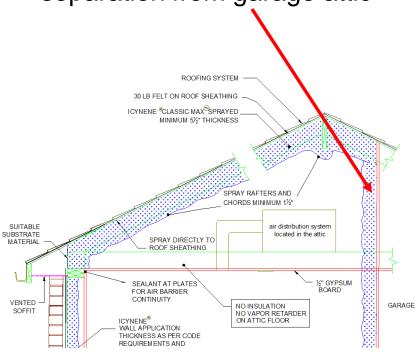


Application Considerations for All Icynene Foams



Gable Ends of Roof Require Application

Application Considerations for Classic MaxTM



Application Considerations - Garage

Attic above living space needs separation from garage attic

Health and Safety Implications

Health and Safety Implications

Summary

- Unvented attics temperature and relative humidity closer to living space levels than outside
- Icynene spray foam insulation products have a long track record of unvented attics applications resulting in improved house performance:
 - Unvented attics increase overall house energy efficiency
 - HVAC system size typically reduced
 - House more airtight Energy Ratings & Targets
 More Easily Met
 - Attic and roofing system performance not changed at all or very little; shingle color biggest factor

Summary

- Once all cost deductions are considered, unvented attic applications with Icynene spray foam insulation are cost effective; \$3,700 in SouthEast house example
- Application is straightforward

Questions?

