Designing And Building Our
Net-Zero Home:
Knowledge Gained And
Lessons Learned

Presenters: Matthew Vande and Amy Musser
Topics to be discussed

- General Information About Our House
- Construction / Design Strategies
- How We Got To Net-Zero
- Successes… And Some Lessons Learned
- Q&A
VandeMusser Residence

- Location: Asheville, NC
- Climate Zone 4
- 1900 SF home / 1200 SF office
- 3 bed / 2.5 bath
- Passive / active solar
- All-electric home

- HERS Index w/o solar = 44
- Final HERS Index = 12
- Certifications: Energy Star, LEED for Homes (Platinum), EPA Indoor AirPlus, NC HealthyBuilt Homes (Platinum)
VandeMusser Residence

Main floor plan

- Residential (public)
- Residential (private)
- Outdoor living
- Plumbing
VandeMusser Residence

Living room

Fireplace (we’ll talk about this later...)

Cross ventilation

Living room
The only incandescent bulb in the house (100w)
VandeMusser Residence

VandeMusser Design office

Amy

Bear
Strategies – Passive / Active Solar

- 418 SF glazing on south (70%) - 17.7% WWA
- 182 SF glazing on other sides (30%) - 17.5% WFA

(1) solar thermal panel

6 kw PV
Strategies – Passive Solar

- Double-pane (triple-pane problematic for high SHGC)
- North, east, and west windows:
 U-value = 0.33 / SHGC = 0.23
- South windows:
 U-value = 0.36 / SHGC = 0.53
- Properly sized overhangs over all south windows
Strategies – Foundation Walls

- Pre-Insulated (R12.5) Panelized Foundation with R19 FG (R31.5 total)
- Foundation was set in 3 hours
- Very easy to finish out
- Office is in walk-out basement (CHEAP SQUARE FOOTAGE!)
Strategies – Basement Slab

- Integral color
- 4” 2500 psi normal weight concrete over 2” rigid insulation (R10)
- 30% fly ash content
- Granite aggregate
- Ground and polished
Strategies – Main Floor Slab

- 3” 4000 psi normal weight concrete over ¾” rigid insulation (R3) over trusses
- 30% fly ash content
- Local river stone aggregate
- Semi-translucent surface-applied color
- Ground and polished
Strategies – HVAC

- 3-ton geothermal heat pump w/ 2 zones
- Able to switch between forced air and hot water (radiant)
- 2 vertical wells, each at 250 feet deep
Strategies – HVAC

- Required ventilation (ASHRAE 62.2) = 62 cfm
- Fresh air ventilation – energy recovery ventilator (ERV)
- Low energy usage – approx. 40 watts
Strategies – Radiant Heat

- Comfort issue, not an energy saver.
- Radiant heat powered by geothermal heat pump (low temp)
- Lower and main floors are radiant slab
- Upper floor has radiant wall
Strategies – Radiant Heat

Goal: loops of equal length
Strategies – SIP Walls / Roof

- Urethane Structural Insulated Panels (SIP) panels
- 4.5” walls (R24)
- 6.5” roof (R38)
Strategies – Rim Joist

Continuous R10 insulation board

2” closed cell foam between trusses
Strategies – Rafter Tails

- Rafters that penetrate through exterior walls tend to have a devastating effect on envelope leakage.
- Rafter tails are false – separate piece lagged to SIP roof from above.
- Exterior sheathing of SIP is continuous.
Goal: To build for same amount as everyone else...

Cost: $156 / SF (including incentives)
Getting to Net-Zero

- Electrical Circuit Monitoring
- First 12 months:
 - 5843 kWh used
 - 6147 kWh generated
Getting To Net-Zero

Water Heater
- Electronic timer on water heater to force solar panels to do most of work
- Electric back-up only allowed to heat from 4:00 to 6:00 (cheaper power) if tank temperature is low
- Most of our hot water use is early morning
Getting To Net-Zero

Office Electrical Use

- Before we installed the eMonitor, computers in office left on 24/7
- After installation, turned off most computers at end of work day (60% reduction in office power usage)
- Monthly savings - $20 to $25
Clothes Dryer

- Fairly significant power user when running
- We only use it at night and on weekends (cheaper power)
- If the sun is out, we dry our clothes outside on a clothes line instead.
Getting to Net-Zero

Heat Pump
- In cold weather, our biggest energy user (by a lot!)
- Winter thermostat currently set at 71 degrees
- Could likely eliminate a lot of heat pump activity if we lowered it to 68 degrees...
Lessons Learned – Mech. Room

- NOT BIG ENOUGH!
- Electrical panel and PV inverter had to be relocated to workshop
- ERV is not ideally located
- Radiant manifold for main floor tubing is above ceiling in office
- A/V controls are in adjacent closet
Lessons Learned – Ghetto Wine Cellar

- Intentionally left area in basement under stairs unconditioned / removed foundation insulation
- Relative humidity too high (typically 73% - 80% RH)
- Temperature swing too large (59° winter - 70° summer)
- Ideal wine storage: 50-70% RH / 55°-57°F
- Removed too much insulation at top of foundation wall above grade (condensation in Winter / overheating in Summer)
- Air leakage from rest of house
Lessons Learned – Toilets

- Don’t be swayed by aesthetics only...
- Dual-flush - 1.6 / 0.8 gpf
- MaP rating = 600g
- Doesn’t flush worth a s***!
- 1.6 gpf x 2 flushes = 3.2 gal.

- http://www.map-testing.com
- ALWAYS get one that can flush >1000g
- **Plenty** of 1.28 gpf options
Lessons Learned – Box Elder Beetles

- Property had several box elder trees (we still have 1)
- Spring and Fall breeding seasons
- They LOVE south-facing masonry walls to lay eggs
- Totally harmless - don’t have interest in coming inside
- Spray with a mix of dish soap and water to kill them
Lessons Learned – Effects Of A Bad Economy

- Built in worst part of the recession
- Bank loan was problematic – needed HELOC to pay contractor for materials (bank took too long)
- We thought subcontractor labor would be cheaper, building materials would be plentiful and immediately available
- Subcontractors were actually running skeleton crews (and often letting most experienced / expensive employees go)
- Building supply companies were extremely under-stocked
- To build with any quality, it was going to be both slow and expensive.
Lessons Learned – Radiant Heat

- Consciously did it knowing it was not an energy saver
- Coordination of tubing with floor penetrations/saw cuts
- Doesn’t run very often due to thermal mass (in Winter, if sunny the day before, usually comes on around 3:00 AM)
- **Cost** (of installing tubing, storage tank, and specialized equipment) - $11000 +/-
Lessons Learned – SIP’s

- Coordination of window / door openings
- Electrical – whining, schedule
- Structural beam pockets
- Builder’s learning curve
- **COST**
Lessons Learned – SIP’s

- Frame walls with 2x4 framing at 16” on center with R15 fiberglass batts in cavity / R10 continuous exterior insulation board AND change roof to TJI rafters at 16” on center with 8” open cell foam (R30): $18,000

- Additional cost of SIP roofs (R38) and walls (R24): $12,000

- Annual energy savings to make change to SIP’s: $5

- Rate of payback: 2400 years
Lessons Learned – ERV

- In a tight house in Asheville, controlling humidity is an issue 12 months out of the year
- Prone to window condensation in winter
- Better choice probably would have been an HRV (more efficient in winter/less in summer/overall neutral)
- Our AC would handle the latent load in summer.
- HRV would also have been slightly cheaper - $150

Temperature / humidity in kitchen at 3:00 PM on February 14, 2013
Lessons Learned – Fireplace

- EPA-certified fireplace insert
- Wood burning - 70% efficient
- Did we need it? Original thought was backup heat in case of power outage.
- Works great, but we have had one small fire so far (2 winters in house) – mostly out of guilt...
- So efficient, it tends to overheat the living area
- Cost: $5000
Things we could have cost-optimized:

- Eliminate radiant heat (forced air only) ($11,000)
- Eliminate SIPS (use continuous exterior rigid ins.) ($12,000)
- HRV in lieu of ERV ($150)
- Eliminate fireplace ($5,000)
- Eliminate rainwater harvesting ($3,000)
 (city water is very cheap in Asheville)

TOTAL ($41,150)

- Original cost / SF (including incentives) $156 / SF
- Optimized cost / SF (no change in performance) $143 / SF
Successes – Natural Light

- HUGE impact on mood and productivity
- Has changed our sleeping patterns
- Almost never need lights on during the day, even when cloudy
- Overhangs sized to fully shade windows at noon on Summer solstice
- Sun penetrates full depth of house at noon on Winter solstice
Successes – Thermal Mass Floors

- Thermal mass floors heat up dramatically on sunny Winter days
- Polished concrete floors are durable, low-VOC, and contain recycled fly ash
- Similar finished cost to high-end hardwood or tile floors
Successes – Rainwater Harvesting

- 3000-gallon rainwater cistern
- Collects water off 80% of roof area
- Standing seam metal roof reduces contaminants
- Toilets and outside hose bibbs only (non-potable) / independent plumbing lines
- Booster pump in mechanical room for easy maintenance
- Reduced city water usage by 50%
Successes – Financial Incentives

- Geothermal (30% Federal / 35% State) $17,150
- Geothermal + Energy Star (Utility Rebate) $1,000
- Solar Thermal (30% Federal / 35% State) $2,535
- Solar Thermal (Utility Rebate) $1,000
- Photovoltaic (30% Federal / 35% State) $19,400
- Photovoltaic (Utility Rebate) $5,150
- EPAct $2000 Federal Builder Tax Credit $2,000
- Passive Solar Tax Credits (State) $3,500
- Local Permit Fee Rebates $200

total incentives $51,935

reduction in cost / SF ($16.72) / SF

estimated rate of payback 7 to 10 years
Any Questions?

Progress Energy

Account number
Total due $1.19
Current charges past due after Jul 30
Thank you for your payment Jun 13 $1.83
Usage period Jun 4 - Jul 3
This bill was mailed on July 6, 2012

Usage
Meter number RC9717
Readings: Jul 3 4708
Jun 4 - 4434
kWh usage 274
Days in period 29 Average kWh per day 9

Total Peak Registration
On-peak KW Jul 2 at 8:59 pm 2.21
Off-peak KW 6.14