"RESNET, Home Raters, and Reflective Insulation Manufacturers: How All Can Work Together"

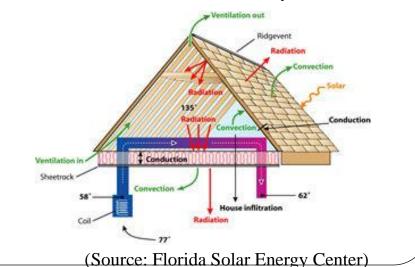
Mario A. Medina, Ph.D., P.E.

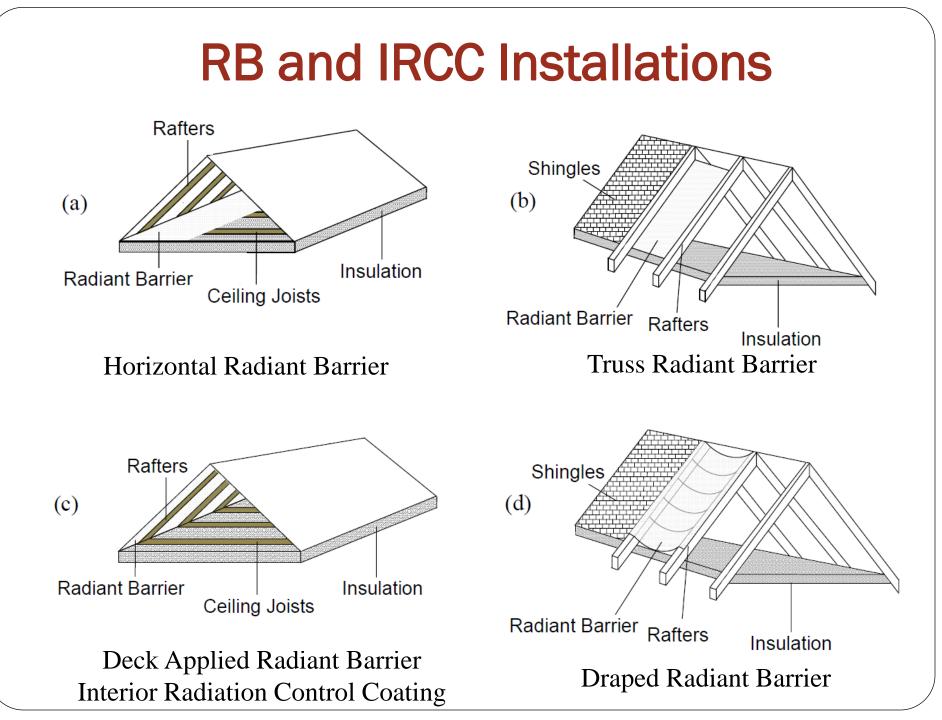
Building Thermal and Material Sciences Laboratory Civil, Environmental, and Architectural Engineering The University of Kansas

Outline

- Introduction to Radiant Barriers (RBs) and Interior Radiation Control Coatings (IRCCs)
- Reflective Insulation Manufacturers' Association International (RIMA-I)
- RESNET and RB and IRCCs
- RIMA-I Available Information Related to RBs and IRCCs
- Technical and Scientific Information
- Performance Data Reduced Energy Consumption in Homes with Installed RBs and IRCCs

Radiant Barriers and Interior Radiation Control Coatings


- Radiant Barriers (RBs) and Interior Radiation Control Coatings (IRCCs) function by reducing heat transfer by *radiation*.
- The thermal performance or the reduction of radiant heat transfer is proportional to the surface *emittance* of the RB and IRCC surface material and follows:


$$\dot{q}_{12} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \varepsilon_1}{A_1 \varepsilon_1} + \frac{1}{A_1 F_{12}} + \frac{1 - \varepsilon_2}{A_2 \varepsilon_2}}$$

• Common building materials, such as wood, masonry, and fiberglass insulation have average surface emittances of approximately 0.85; products defined as radiant barriers have surface emittances less than or equal to 0.1 and products defined as interior radiation control coatings convert surface emittances to 0.25 or less.

Source: **"Radiant Barriers: Performance Revealed"** September/October 2000 Issue, Home Energy Magazine By Mario A. Medina

RB and IRCC Installations

"Truss Radiant Barrier" (TRB)

"Horizontal Radiant Barrier" (HRB)

"Interior Radiation Control Coating" (IRCC)

RB and IRCC Installations

"Radiant Barrier Below Roof Tile"

About RIMA-I

The Reflective Insulation Manufacturers Association International is a non-profit association that represents manufacturers and distributors of reflective insulation, radiant barriers and interior radiation control coating materials (IRCCs).

RIMA-I's activities are guided by an active board of industry members who participate on national and regional levels of building code organizations and governmental agencies. The association went international in 2008 when more than 1/3 of the membership were outside North America.

I-RIM Conference

International Reflective Insulation Manufacturers Conference

Saving Energy Today for a Better World Tomorrow

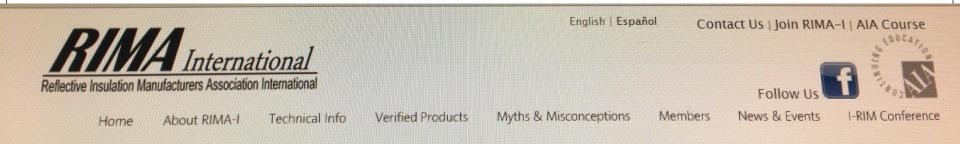
Because of the growing interest and need for reflective research around the world, RIMA-I recently launched the International Reflective Insulation Manufacturers Conference which is held bi-annually alternating between North America and overseas.

For example, the last two events were held in 2010 in Barcelona, Spain and in Fort Lauderdale, Florida in May 1-2, 2012.

RESNET and RBs and IRCCs

- About RBs Chapter 4 (Insulation) of the RESNET Accredited Rater Training course states:
- Radiant Barriers
 - Aluminum material bonded to Kraft paper.
 - Normally applied to the underside of the roof decking
 - Will drop attic temperature 20 to 30 F
 - Has to have air against the side with the barrier (attic) \rightarrow RB/IRCC should face the attic space.

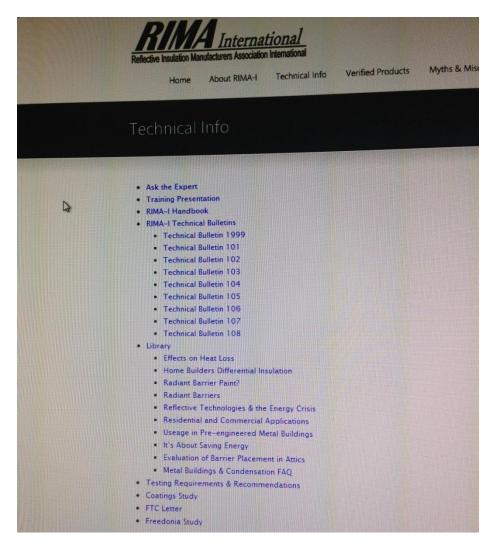
•About RBs and IRCCs Chapter 8 (Cooling) of the RESNET Accredited Rater Training course states:


- Mentions paper faced radiant barrier
- *Refers to the one stapled to the rafters*
- Mentions IRCCs
- Drops the attic temperature 20 to 30 F
- Poor emitters
- "You can expect up to 10 % energy savings depending on the climate and insulation level"
- "We can expect more saving from using RBs than from improving attic ventilation"

RESNET and RBs and IRCCs

• About RBs Section 115R Plans Specs and Gathering Data for RemRate of the RESNET Accredited Rater Training course states:

• "Check to see if radiant barriers are installed..."


RIMA-I Information Available About RBs and IRCCs

Technical Info

From RIMA – International 's Website http://www.rimainternational.org/

RIMA-I Information Available About RBs and IRCCs

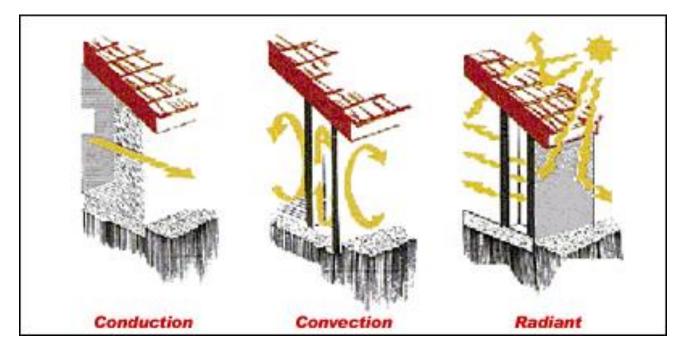
Technical and Scientific Information

•Radiant barriers function by reducing heat transfer by radiation.

•The thermal performance or the reduction of radiant heat transfer is directly proportional to the surface emittance of the radiant barrier material.

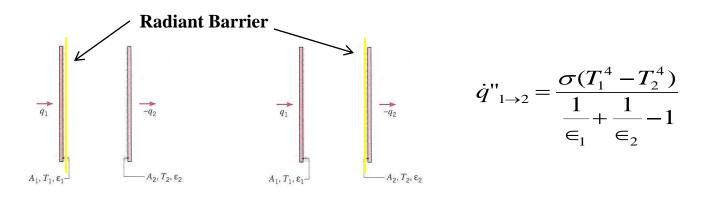
•Emittance measurements of all materials range between zero (0), no radiant heat transfer, and one (1) that of a "blackbody" surface or complete radiant heat transfer.

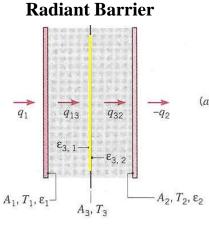
•Common building materials, such as wood, masonry, and fiberglass insulation have surface emittances of approximately 0.85 and therefore have high radiant heat transfer rates.

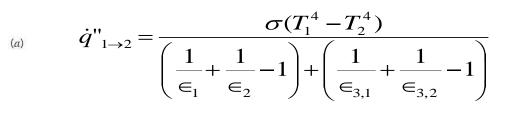

•*Products defined as radiant barriers have surface emittances less than or equal to 0.1 or low radiant heat transfer rates and products defined as interior radiation control coatings convert surface emittances to 0.25 or less.*

How They Work

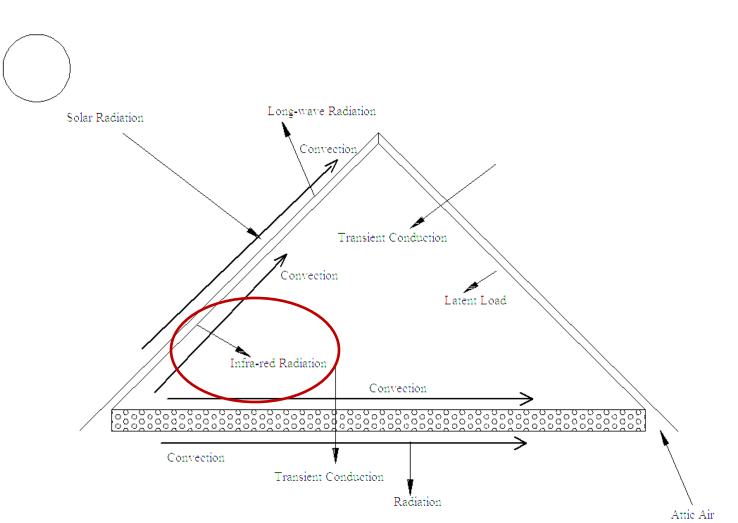
RBs and IRCCs work by reducing radiation heat transfer *across air spaces*.

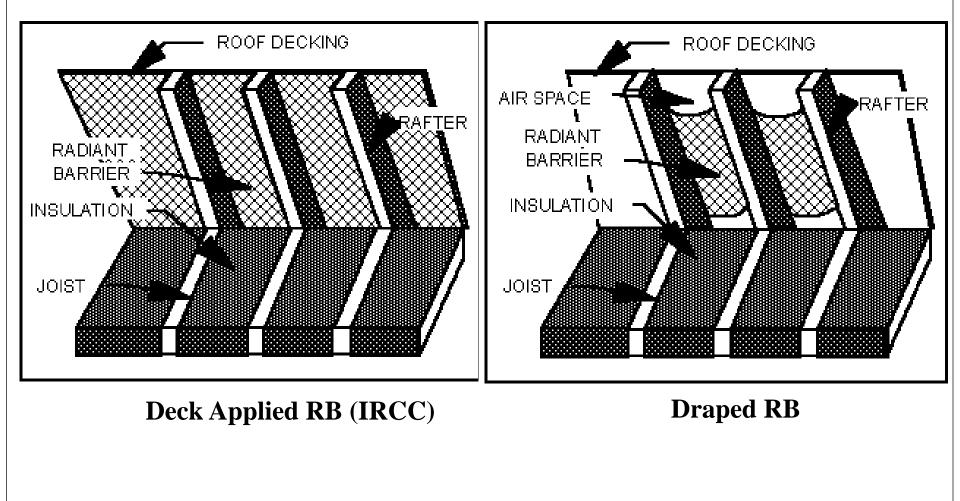

Example: in residential attic applications, this radiation heat transfer is the one between the roof deck and/or end gables and the attic floor. This is the heat energy that is controlled (e.g. blocked) by the radiant barriers.


Modes of Heat Transfer

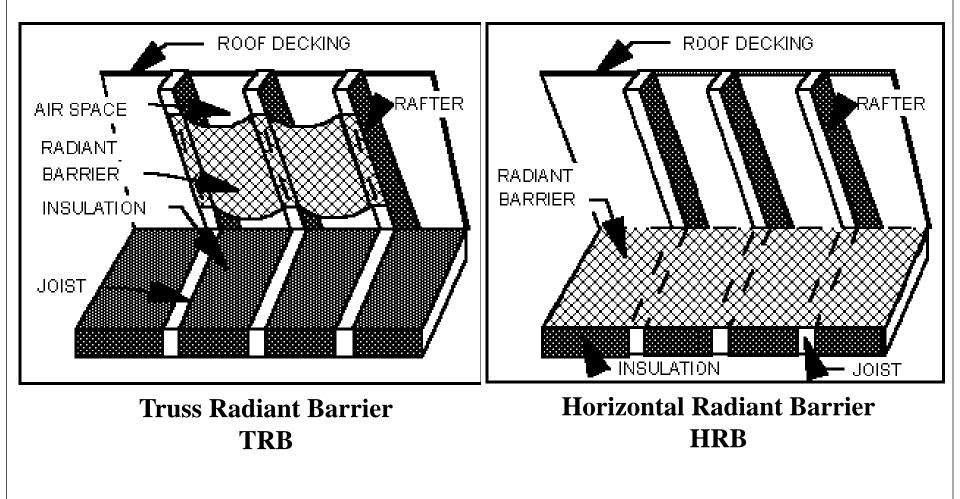


Source: Energy Savers of America http://www.btubusters.com/typesofheat.gif


Radiant Barriers and IRCCs Heat Transfer Schematic



Attic Heat Transfer Schematic



Installation Configurations

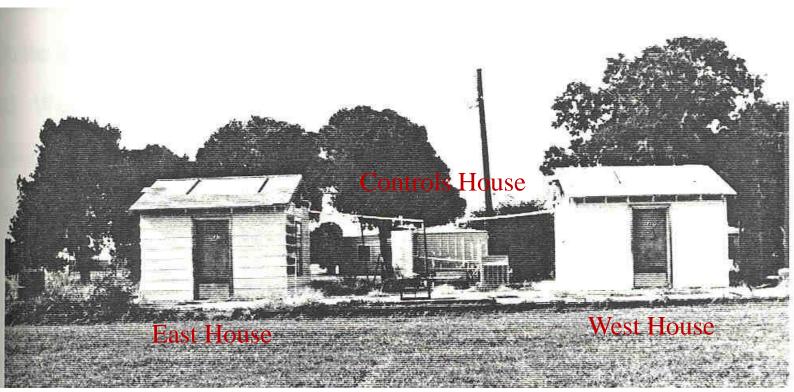
Source: Alternative Heating Info.com

Installation Configurations

Source: Alternative Heating Info.com

How Is Their Performance Assessed

Experiments


Side by side monitoring of pre- and post-retrofit data.

Modeling

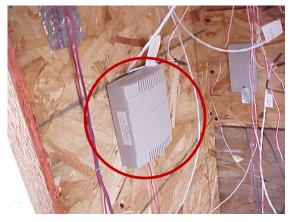
Mathematical combination of thermal science theories that describe the heat and mass processes that take place in attic systems. Usually implemented with computers.

Model/Experiment Verification (Validation)

Experiments: Test Houses

Houses were 12 ft by 12 ft with 8 ft ceilings.

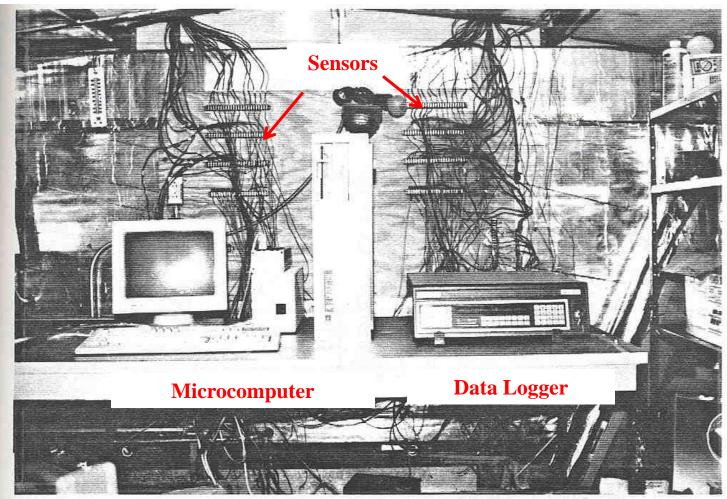
The houses were located in Central Texas. Climate is humid subtropical. **Houses thermal responses were identical prior to the retrofits.**


Experiments: Sample Sensors

Heat Flux Meter

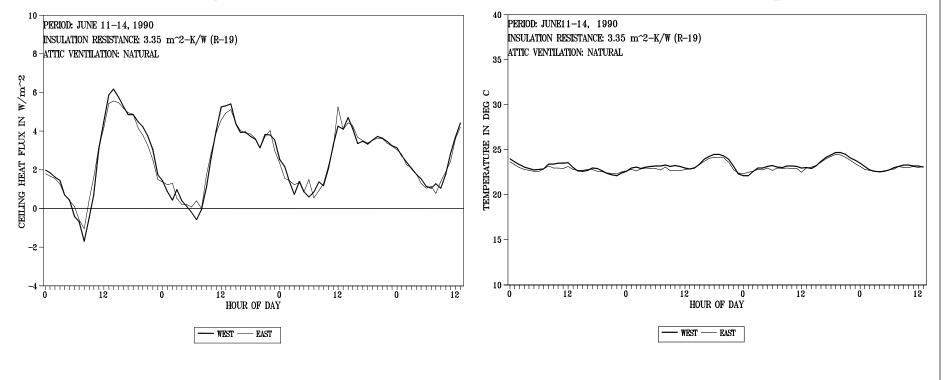
Thermocouple

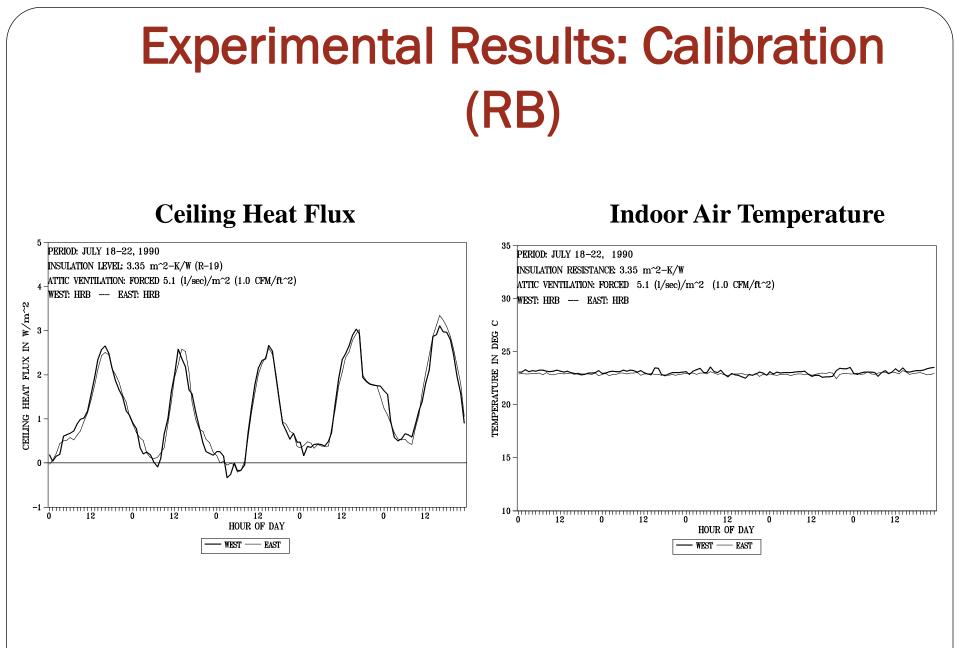
Relative Humidity Transducer

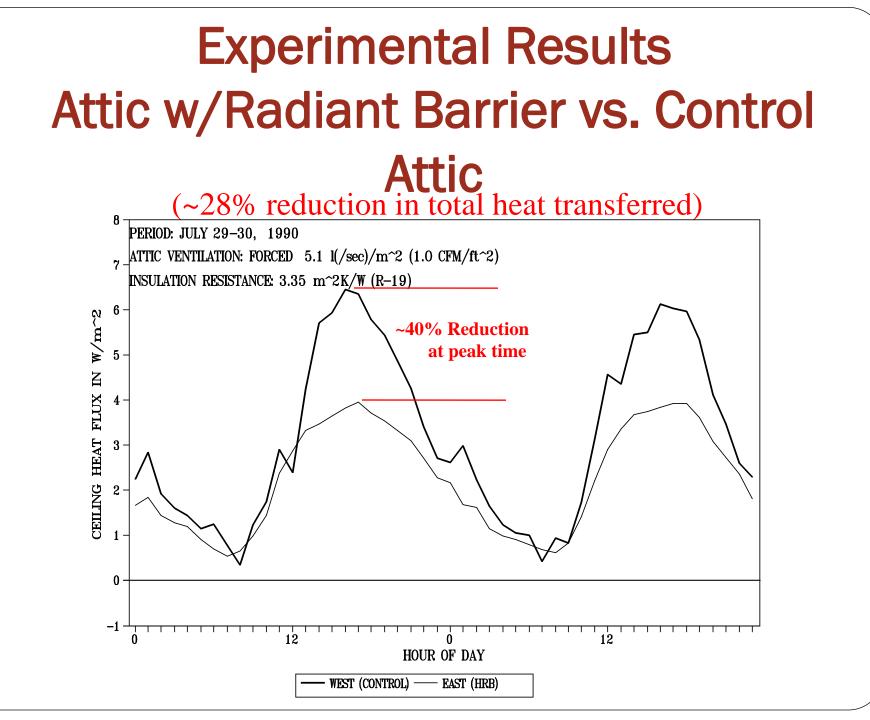

Pyranometer

Turbine Mass Flow Meter

Anemometer

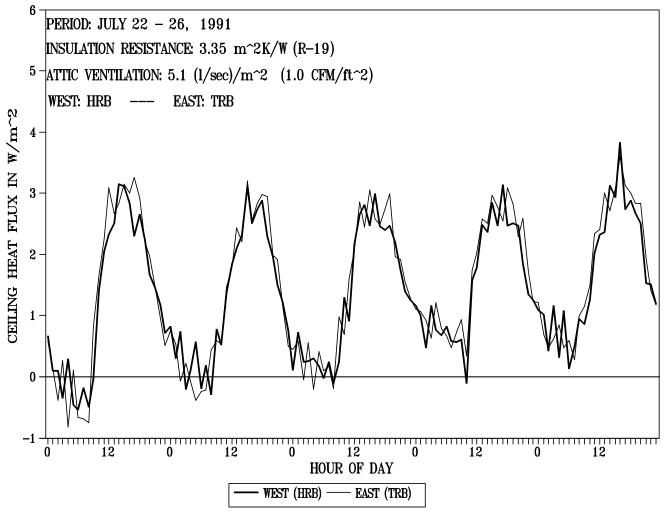

Experiments: Monitoring Equipment

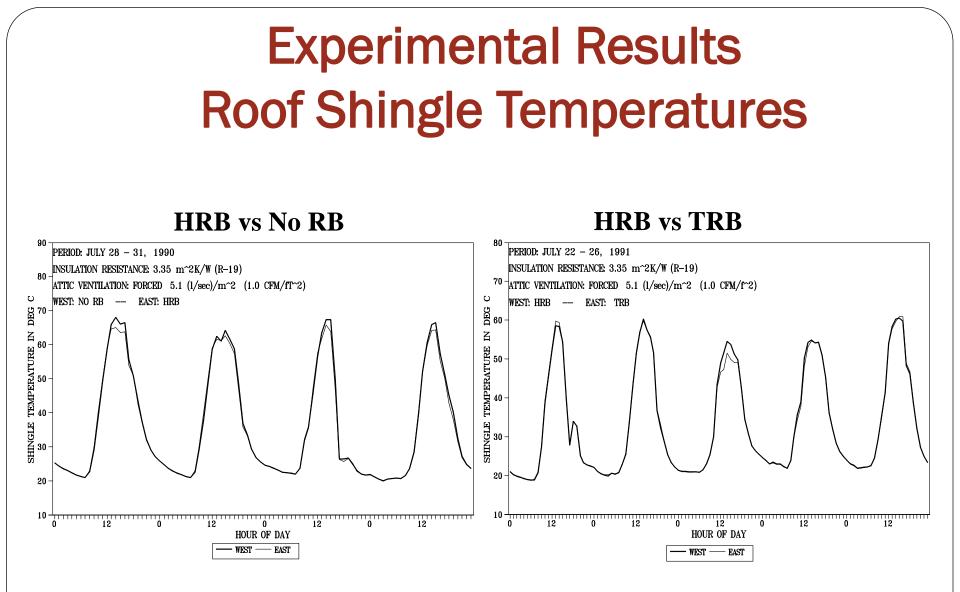



Experimental Results: Calibration (No RB)

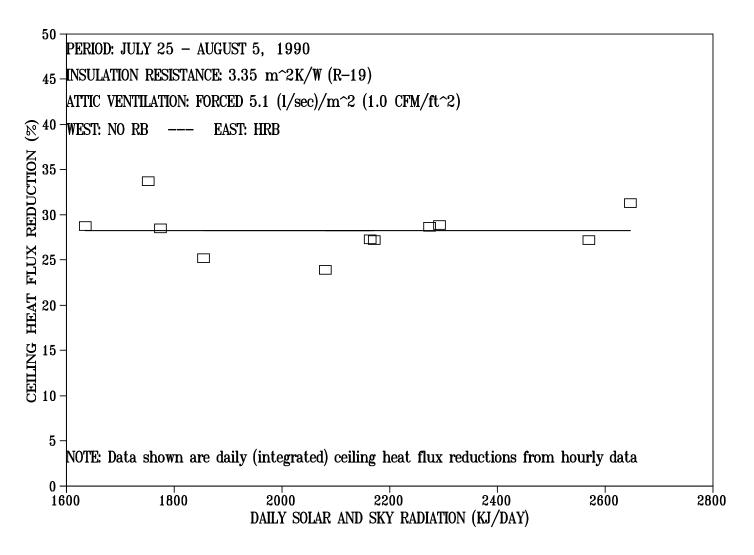
Ceiling Heat Flux

Indoor Air Temperature

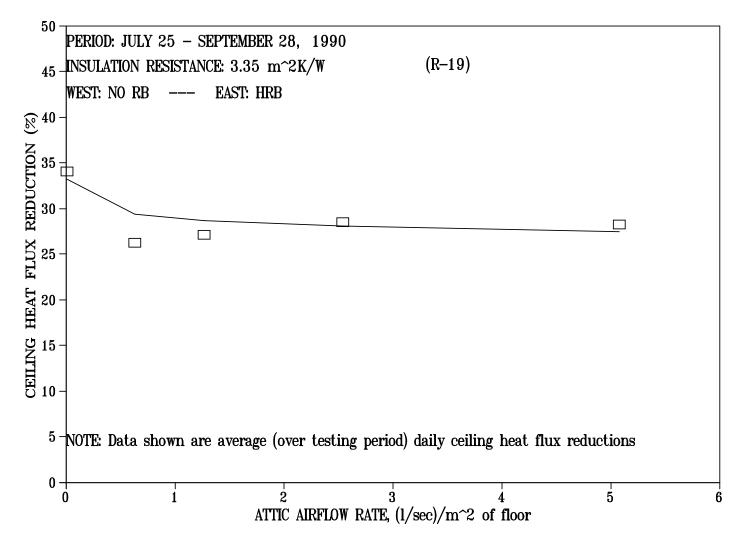

Radiant Barrier Performance

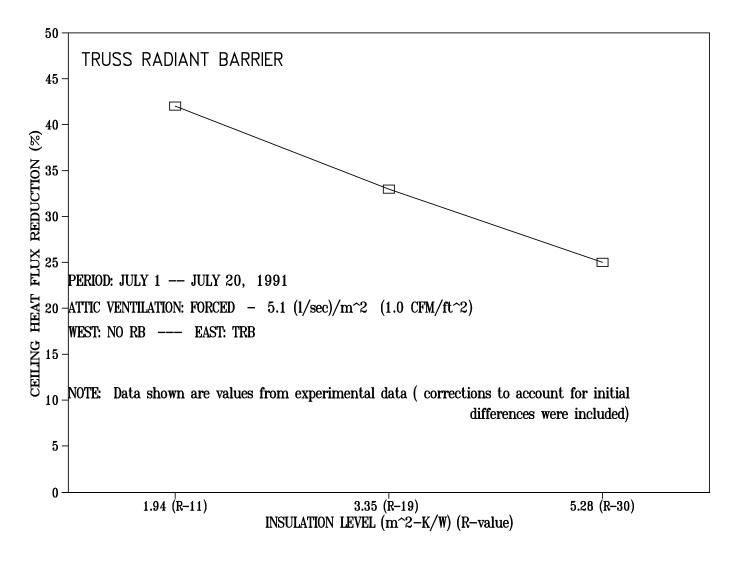

% Reduction =
$$\frac{\int q_{Control} dt - \int q_{Retrofit} dt}{\int q_{Control} dt} x 100$$
$$\frac{\int q_{Control} dt}{Test Period}$$

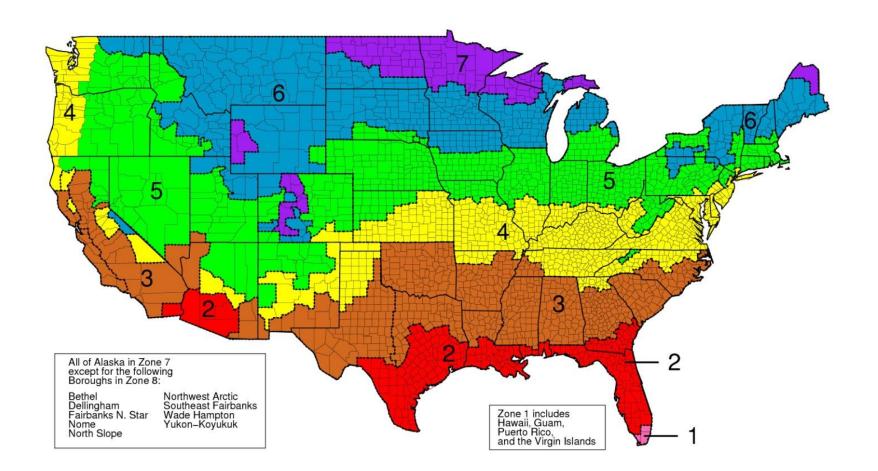
 $q_{Control}$: Ceiling heat flux from the control attic [Btu/hr-ft², W/m²] $q_{Retrofit}$: Ceiling heat flux from the retrofit attic [Btu/hr-ft², W/m²] Test Period: Testing period used in the integration


Experimental Results Installation Comparisons

(HRB performs slightly better ~ 5%)




Experimental Results Effects of Daily Solar Radiation


Experimental Results Effects of Attic Ventilation

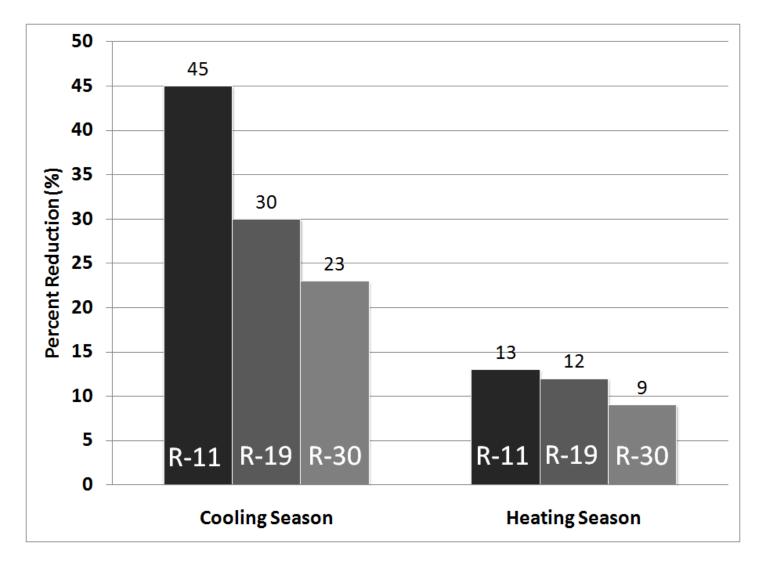
Experimental Results Effects of Attic Insulation Level

Radiant Barrier Performance

U.S. Climate Zone Map (ASHRAE Standard 169-2006, 2006)

Radiant Barrier Performance Ceiling Heat Flow

-		EXPERIMEN	NTAL RESULT	S HIGHLIGI	HTING	CEILING	HEAT	FLOW F	REDUCT	IONS P	RODUC	ED BY	THE RA	DIANT	BARRIE	RS AN		RIOR R	ADIATION CONTRO	L COATIN	IGS DURIN	G THE	E CO	OLIN	IG SE	ASON	١						
Season	Reference	Nominal Insulation Level	Testing Protocol	Method		Ceiling Heat Flow Reductions Over Test Period (%) Summer												City, St CDD	CDD	Climatic Zone	Ventilation				Occupied		Comments	Average					
		R-Value			-5	0 - 4	5 - 9	10 - 14	15 - 19	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49	50 - 54	55 - 59	60				Ver	nts	FV	NV	Ν	Y	-					
	Joy (1958)	R-7.5		HRB												50			N	I/A		S	S	х		х		Flat Roof					
	Katipamula & O'Neal (1986)	R-11	Laboratory	HRB											46				N/A					-	-	х		Flat Roof	419/				
	Yarbrough (2010)	R-13	Controlled											41					Ν	I/A		-	-	-	-	х		Pitched Roof	41%				
	Joy (1958)	R-7.5		HRB							28								N	I/A		S	S	х		X		Pitched Roof					
	Swami and Fairey (1986)	R-19	Laboratory Controlled	IRCC								32							Ν	N/A			-	-		x		Flat Roof	32%				
	Ashley et al. (1994)			HRB/TRB														60	Kingsville, TX	3,404	2	G	G		X	_	х	Attic fully wrapped	45%				
	Medina (2000a)	R-11	Side-by-Side	TRB										42					College Station, TX	2,938	2	S	G	х		х							
	Hall (1988a)			TRB								34							Chattanooga, TN	1,608	4	S	G		х	х							
	Fairey (1985)			TRB										43					Cape Canaveral, FL	3,300	2	S	S	х		х		5 ACH, 1 AS f/down	30%				
	Fairey (1985)			TRB										43					Cape Canaveral, FL	3,300	2	S	s	х		х		5 ACH, 2 AS					
oling	Hall (1986)			HRB										40					Chattanooga, TN	1,608	4	S	G		x	х							
2.	Fairey (1990)			TRB									39						Cape Canaveral, FL	3,300	2	-	-		х	х							
	Parker and Sherwin (1998)			TRB									36						Cocoa Beach, FL	3,300	2	S	R		х	Х		Vent area = 1:150					
ŏ	Levins et al. (1986)			HRB									35						Karns, TN	1,301	4	S	G		X	X							
ŭ	Medina (2000a)			TRB								34							College Station, TX	2,938	2	S	G	X		X							
	Levins et al. (1986)			TRB								30							Karns, TN	1,301	4	S	G		x	X							
	Hall (1988a)	R-19	Side-by-Side	TRB								30							Chattanooga, TN	1,608	4	S	G		х	X							
	Medina et al. (1992a)			HRB								30							College Station, TX	2,938	2	S	G	х		х							
	Parker and Sherwin (1998)			TRB							26								Cocoa Beach, FL	3,300	2	S	R		х	Х		Vent area = 1:300	-				
	Hall (1986)			TRB						23									Chattanooga, TN	1,608	4	S	G		x	х							
	McQuiston et al. (1984)			HRB						20									Stillwater, OK	1,881	3	-	-	х	\square	-	-	Curved Roof					
	Ober & Volckhausen (1988)			DRB						20									Orlando, FL	3,428	2	S	G		X	Х							
	Fairey (1985)			TRB					19										Cape Canaveral, FL	3,300	2	-	-			X		Unvented Attics					
	Fairey (1985)			HRB					18										Cape Canaveral, FL	3,300	2	-	-			Х		Unvented Attics					
	Hall (1986)			DRB					16										Chattanooga, TN	1,608	4	S	G		х	X							
	Medina (2000a)	R-30	Cida hu Cida	TRB							25								College Station, TX	2938	2	S	G		X	X			23%				
	Hall (1988a)	K-30	Side-by-Side	TRB						20									Chattanooga, TN	1608	4	S	G		х	х			2370				


Legend: CDD = Cooling Degree Days, HDD = Heating Degree Days, HRB = Horizontal Radiant Barrier, TRB = Truss Radiant Barrier, DARB = Deck-Applied Radiant Barrier, DRB = Draped Radiant Barrier, IRCC = Interior Radiation Control Coating, FV= Forced Ventilation, NV= Natural Ventilation, S = Soffit Vent, G = Gable Vent, R = Ridge Vent, P = Power Fan, ACH = Air Changes per Hour, AS = Aluminized Side, f/ = Facing, N/A = Not Applicable, (-) = Not Specified

Radiant Barrier Performance Ceiling Heat Flow

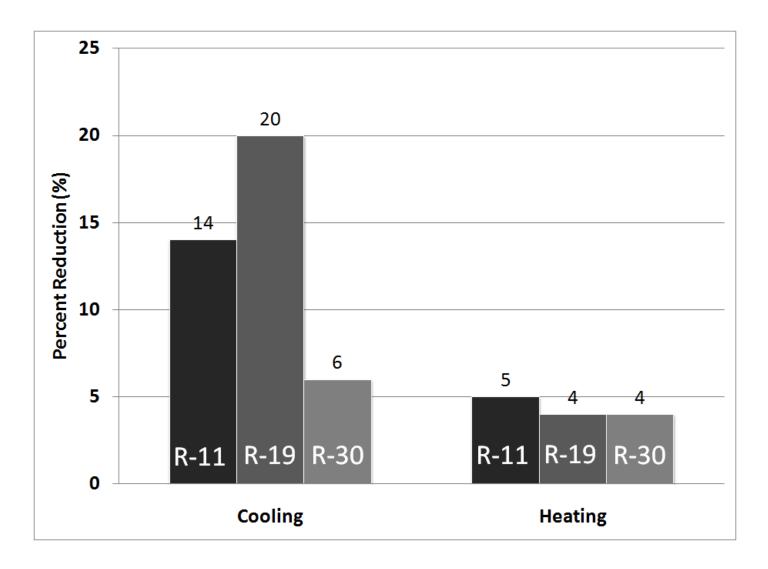
		EXPERIME	NTAL RESULT	S HIGHLIG	HTING	CEILING	HEAT	FLOW I	REDUCT	IONS F	RODU	CED BY	THE R	ADIANT	BARRI	RS AN	D INTER	RIOR R	ADIATION CONTRO	L COATIN	IGS DURING	G THE	E HEA	TING	SEAS	ON		
Season	Reference	Nominal Insulation	Testing	Method		Ceiling Heat Flow Reductions Over Test Period (%)												City, St	HDD	Climatic	Ventilation			(Occupied	Comments	Average	
		Level R-Value	Protocol		Winter -5 0 - 4 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59 60											_		Zone						4				
		N-Value	<u> </u>		-5	0 - 4	5 - 9	10 - 14	15 - 19	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 - 49	50 - 54	55 - 59	60				Ver	nts F	VN		N Y		
	Levins and Karnitz (1988)			HRB					19										Karns, TN	3,993	4	S	G	1	X	х		
	Hall (1988)	R-11	Side-by-Side	HRB					17										Chattanooga, TN	3,427	4	S	G	3	x :	x		13%
	Levins and Karnitz (1988)	N-11	Side-by-Side	TRB			8												Karns, TN	3,993	4	S	G	3	X	х		- 13%
	Hall (1988)			TRB			6												Chattanooga, TN	3,427	4	S	G	1	X :	x		
	Levins and Karnitz (1987b)		Side-by-Side	TRB								30							Karns, TN	3,993	4	S	G	1	X	x		[/
	Fairey (1990)			TRB						24									Cape Canaveral, FL	677	2	-	-)	x :	x	-	- 12%
	Medina et al. (1992b)	-		HRB					17										College Station, TX	1,616	2	-	-		-	x	Non-vented Attics	
60	Hall (1986)			HRB					15										Chattanooga, TN	3,427	4	S	G	3	X :	x		
_	Medina et al. (1992b)			TRB					15										College Station, TX	1,616	2	-	-	-	-	х	Non-vented Attics	
ti.	Medina et al. (1992b)			HRB				14											College Station, TX	1,616	2	S	G	x		x		
g	McQuiston et al. (1984)	R-19		HRB				10											Stillwater, OK	3,989	3	-	- 1	х			Curved Roof	
<u>e</u>	Medina et al. (1992b)			TRB			9												College Station, TX	1,616	2	S	G	x	1	x		
	Hall (1988a)			HRB			5												Chattanooga, TN	3,427	4	S	G)	X	х		
	Hall (1986)			TRB			8												Chattanooga, TN	3,427	4	S	G	3	x	x		
	Hall (1986)			DRB		4													Chattanooga, TN	3,427	4	S	G	3	x	x		
	Hall (1988a)			TRB	-5														Chattanooga, TN	3,427	4	S	G	1	x	х		
	Hall (1988a)	R-30	Side-by-Side	HRB					15										Chattanooga, TN	3,427	4	S	G)	X	х		9%
	Levins and Karnitz (1988)			HRB				10											Karns, TN	3,993	4	S	G	3	X :	x		
	Hall (1988a)			TRB			6												Chattanooga, TN	3,427	4	S	G)	x	x		
	Levins and Karnitz (1988)			TRB		4													Karns, TN	3,993	4	S	G)	x :	х		

Legend: CDD = Cooling Degree Days, HDD = Heating Degree Days, HRB = Horizontal Radiant Barrier, TRB = Truss Radiant Barrier, DARB = Deck-Applied Radiant Barrier, DRB = Draped Radiant Barrier, IRCC = Interior Radiation Control Coating, FV= Forced Ventilation, NV= Natural Ventilation, S = Soffit Vent, G = Gable Vent, R = Ridge Vent, P = Power Fan, ACH = Air Changes per Hour, AS = Aluminized Side, f/ = Facing, N/A = Not Applicable, (-) = Not Specified

Radiant Barrier Performance Ceiling Heat Flow

Radiant Barrier Performance Space Cooling Load

	EXPERIMENTAL RESULTS HIGHLIGHTING SPACE COOLING LOAD REDUCTIONS PRODUCED BY THE RADIANT BARRIERS																								
Season	Reference	Nominal Insulation Level	Testing Protocol	Method	Ceiling Area			Spac	ce Load R Coo		ı (%)			City, St	CDD	Climatic Zone		Venti	latior	n	Occu	ıpied	Inclu Ducts At	in the	Average
		R-Value				-5	0 - 4	5 - 9	10 - 14	15 - 19	20 - 24	25 - 29	30				Ve	nts	FV	NV	Ν	Y	Y	Ν	
	Levins and Karnitz (1987a)	R-11	Side-by-Side	HRB	1,200					16				Karns, TN	1,301	4	S	G		Х	Х			Х	14%
	Levins and Karnitz (1987a)	N-11	Side-by-Side	TRB	1,200				11					Karns, TN	1,301	4	S	G		Х	Х			X	14/0
	Parker and Sherwin (2002)		Pre-and-Post	TRB	2,440							27		Orlando, FL	3,428	2	-	-	-	-		х		Х	
60	Levins et al. (1986)	R-19	Side-by-Side	HRB	1,200						21			Karns, TN	1,301	4	S	G		х	Х			Х	20%
2	Parker and Sherwin (2002)	K-19	Pre-and-Post	TRB	2,200						20			Largo, FL	3,718	2	-	-	-	-		х	Х		2076
:=	Levins et al. (1986)		Side-by-Side	TRB	1,200				13					Karns, TN	1,301	4	S	G		х	Х			Х	
00	Parker and Sherwin (2002)		Pre-and-Post	TRB	1,520					16				Tarpon Springs, FL	3,414	2	-	-	-	-		х			
ŭ	Davis and Tiller (2009)		Side-by-Side	TRB	3,205				14					Charlotte, NC	1,681	3	S	R		х	Х		х		
	Parker and Sherwin (2002)	R-30	Pre-and-Post	TRB	1,840			5						Apopka, FL	3,428	2	S	Р	х	Х		х	Х		6%
	Levins and Karnitz (1987a)	R-30	Side-by-Side	HRB	1,200		2							Karns, TN	1,301	4	S	G		х	х			х	070
	Parker and Sherwin (2002)		Pre-and-Post	TRB	2,140		0							Orlando, FL	3,428	2	Ρ	Ρ	Х			х	Part	ially	
	Levins and Karnitz (1987a)		Side-by-Side	TRB	1,200	-1							_	Karns, TN	1,301	4	S	G		Х	х			Х	

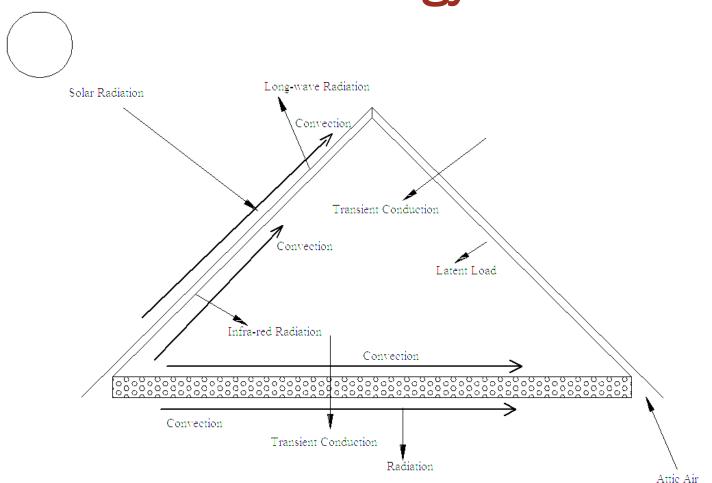

Legend: CDD = Cooling Degree Days, HDD = Heating Degree Days, HRB = Horizontal Radiant Barrier, TRB = Truss Radiant Barrier, DARB = Deck-Applied Radiant Barrier, DRB = Draped Radiant Barrier, IRCC = Interior Radiation Control Coating, FV= Forced Ventilation, NV= Natural Ventilation, S = Soffit Vent, G = Gable Vent, R = Ridge Vent, P = Power Fan, ACH = Air Changes per Hour, AS = Aluminized Side, f/ = Facing, N/A = Not Applicable, (-) = Not Specified

Radiant Barrier Performance Space Heating Load

	EXPERIMENTAL RESULTS HIGHLIGHTING SPACE HEATING LOAD REDUCTIONS PRODUCED BY THE RADIANT BARRIERS																													
Season	Reference	Nominal Insulation	Testing	Method	Ceiling Area			Spa	ce Load F	eduction	n (%)			City, St	HDD	Climatic		Venti	latior	1	Occu	pied	Inclu Ducts	in the	Average					
ocuson	herefellee	Level	Protocol			inclinu	methou	cening / i cu				Hea	iting				citifiot		Zone							Attic		, and a set of the set		
		R-Value				-5	0 - 4	5 - 9	10 - 14	15 - 19	20 - 24	25 - 29	30				Ve	nts	FV	NV	Ν	Y	Y	Ν						
60	Levins and Karnitz (1987b)	R-11	Cida by Cida	HRB	1,200			9						Karns, TN	3,993	4	S	G		X	х			Х	5%					
Ē	Levins and Karnitz (1987b)	N-11	Side-by-Side	Side-by-Side	Side-by-Side	Side-by-Side	Side-by-Side	TRB	1,200		0							Karns, TN	3,993	4	S	G		Х	х			Х	370	
t:	Levins et al. (1986)	R-19	o oide hu oide	HRB	1,200				10					Karns, TN	3,993	4	S	G		Х	х			Х	4%					
g	Levins et al. (1986)		R-19	K-19	K-19	K-19	K-19	R-19	Side-by-Side	TRB	1,200	-3								Karns, TN	3,993	4	S	G		X	х			Х
h l	Levins and Karnitz (1987b)	R-30	Side-by-Side	HRB	1,200		4							Karns, TN	3,993	4	S	G		Х	Х			Х	4%					
_ <u> </u>	Levins and Karnitz (1987b)		к-30	R-30	side-by-side	TRB	1,200		4							Karns, TN	3,993	4	S	G		Х	Х			Х	470			

Legend: CDD = Cooling Degree Days, HDD = Heating Degree Days, HRB = Horizontal Radiant Barrier, TRB = Truss Radiant Barrier, DARB = Deck-Applied Radiant Barrier, DRB = Draped Radiant Barrier, IRCC = Interior Radiation Control Coating, FV= Forced Ventilation, NV= Natural Ventilation, S = Soffit Vent, G = Gable Vent, R = Ridge Vent, P = Power Fan, ACH = Air Changes per Hour, AS = Aluminized Side, f/ = Facing, N/A = Not Applicable, (-) = Not Specified

Radiant Barrier Performance Space Cooling and Space Heating Load


Radiant Barrier Performance

Attic Temperature Reductions

Season Nominal Insulation Level Testing Protoci Method	Average 9 F
Hall (1988a) Levins and Karnitz (1987a) Parker and Sherwin (1998) Hall (1988a) Hall (1988a) Hall (1988b) R-11 Side-by-Side Side-by-Side Side-by-Side TRB I Side S	0.5
R-11 Side-by-Side TRB C 7 C C Karns, TN 1,301 4 S G X X C Parker and Sherwin (1998) Parker and Sherwin (2002) Parker and Sherwin (2002) Pre-and Post- Side-by-Side Side-by-Side Fre-and Post- Side-by-Side TRB C C C C C X X V <t< th=""><th>0.5</th></t<>	0.5
Ice/ins and Karnitz (1987a) Ice/ins and Karnitz (1987a) <t< td=""><td></td></t<>	
Parker and Sherwin (2002) Parker and Sherwin (1998) Hall (1988) Pre-and Post- (5de-by-Side Pre-and Post- (Sde-by-Side) Pre-and	91
Parker and Sherwin (2002) Levins and Karnitz (1986) Hall (1988a) Pre-and Post- Side-by-Side THE Image: Constraint of the state	
Side-by-Side Side-by-Side TRB Image: Side-by-Side Image: Side-by-Sid	14 F
Side-by-Side Side-by-Side<	
Image: Side-by-Side by-Side by-	
Parker and Sherwin (1998) Side-by-Side 6 6 Cocoa Beach, FL 3,300 2 S R X Vent area = 1:300 Hall (1986) Side-by-Side HB 8 0 0 Chattanooga, TN 1,608 4 S G X X Vent area = 1:300	
	4 F
	41
O Davis and Tiller (2009) Side-by-Side 23 Charlotte, NC 1,681 3 S R X	
Parker and Sherwin (2002) Pre-and Post-	ſ
Parker and Shervin (2002) R-30 Pre-and Post- TB	11 F
Hall (1988a) K-30 Side-by-Side IKB Side-	11 F
Levins and Karnitz (1987a) Side-by-Side 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ſ
Parker and Sherwin (2002) Pre-and Post- 3 Image: Control of the state of t	

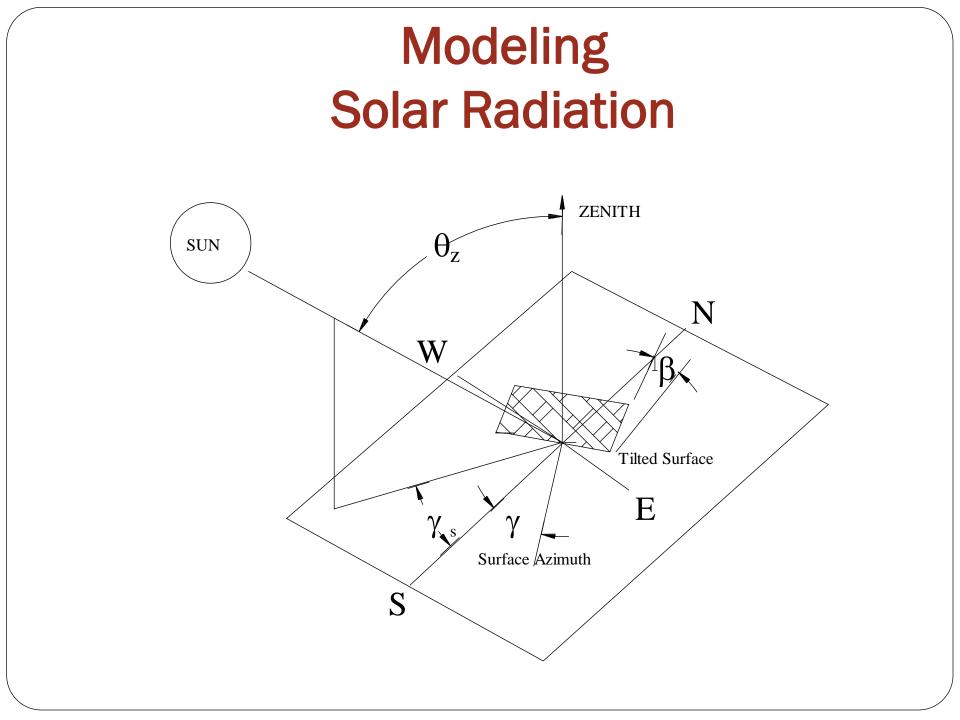
Legend: CDD = Cooling Degree Days, HDD = Heating Degree Days, HRB = Horizontal Radiant Barrier, TRB = Truss Radiant Barrier, DARB = Deck-Applied Radiant Barrier, DRB = Draped Radiant Barrier, IRCC = Interior Radiation Control Coating, FV= Forced Ventilation, NV= Natural Ventilation, S = Soffit Vent, G = Gable Vent, R = Ridge Vent, P = Power Fan, ACH = Air Changes per Hour, AS = Aluminized Side, f/ = Facing, N/A = Not Applicable, {-} = Not Specified

Modeling Based on Energy Balances

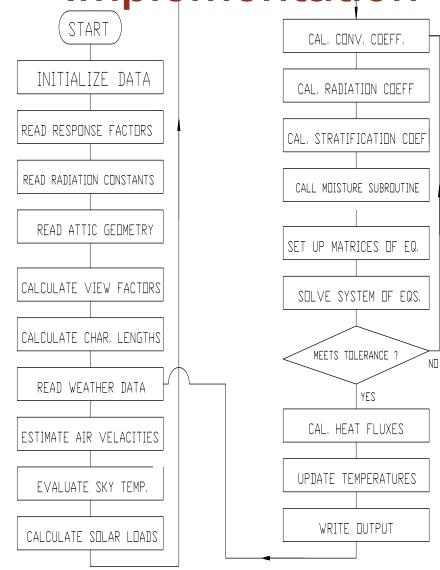
Modeling and Its Importance in RemRate

Energy Balance (General)

 $Q_{conducted(to / from)} + Q_{convected(to / from)} + Q_{radiated(net)} + Q_{latent(condensation' evaporation)} = 0$

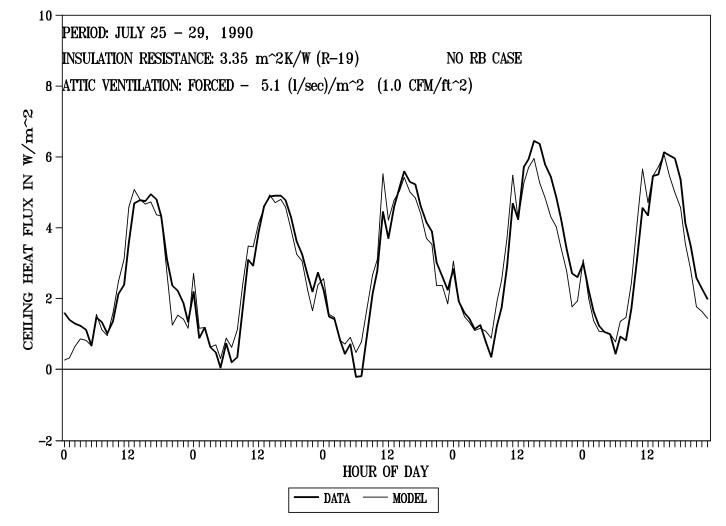

Energy Balance (Heat Transport Processes)

 $\sum_{j=0,i=1}^{N,S} Y_{i,j}(Tsi_{i,n\Delta-j} - Tr) - \sum_{j=0,i=1}^{N,S} X_{i,j}(Tso_{i,n\Delta-j} - Tr) + CR_{i}q''_{o}(i,n\Delta-1) + ho_{i}(T_{amb} - Tso_{i,n\Delta}) + hro_{i}(T_{sky/surr} - Tso_{i,n\Delta}) + \alpha q''_{sol,i} = 0$

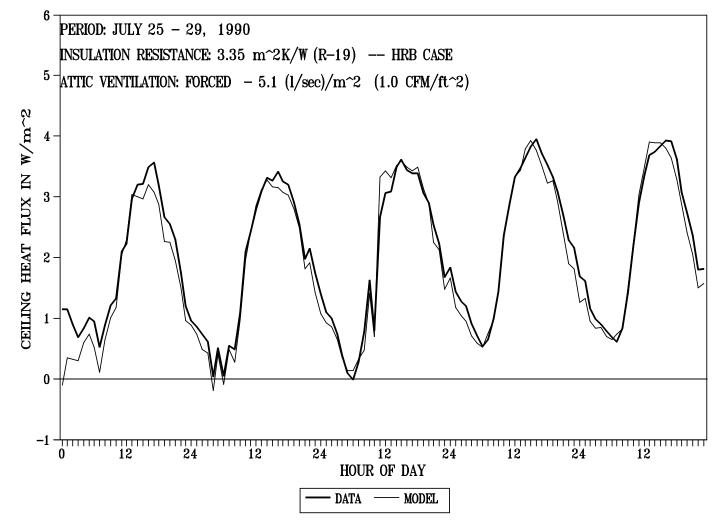

Indoor Energy Balance \rightarrow

←Outdoor Energy Balance

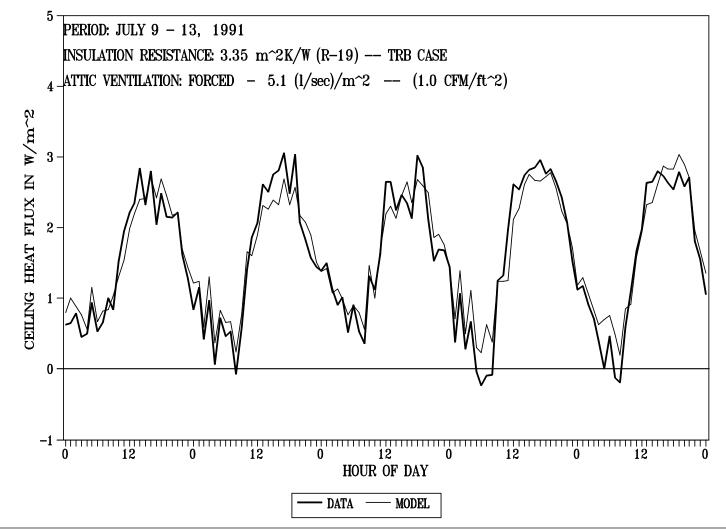
$$\sum_{j=0,i=1}^{N,S} Z_{i,j}(Tsi_{i,n\Delta-j}-Tr) - \sum_{j=0,i=1}^{N,S} Y_{i,j}(Tso_{i,n\Delta-j}-Tr) + CR_{i}q''_{i}(i,n\Delta-1) + hi_{i}(Tsi_{i,n\Delta}-T_{atticair,n\Delta}) + \sum_{k=1}^{s,s} hri_{i,k}(Tsi_{i,n\Delta}-Tsi_{k,n\Delta}) + q''_{latent,i} = 0$$



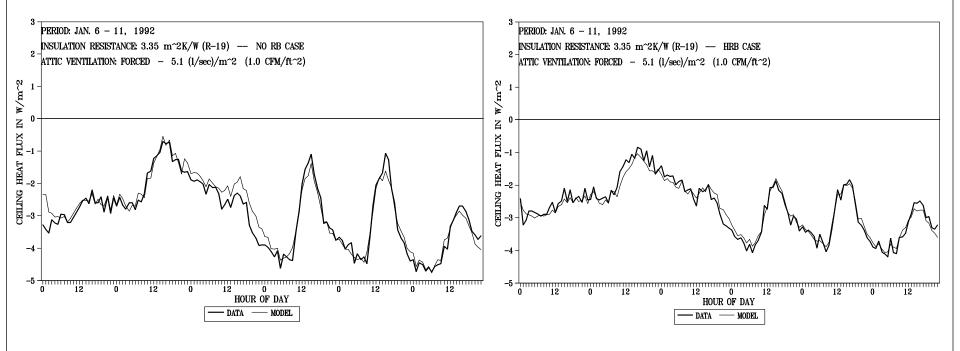
Modeling Implementation


Modeling

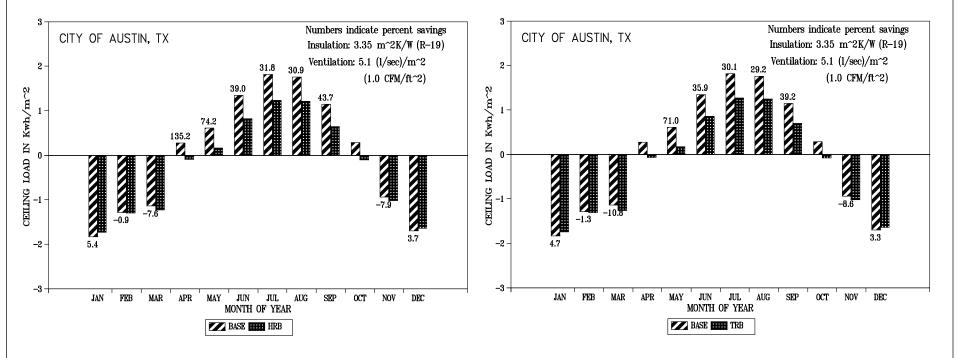
Model Verification vs Exp. Data (No RB)

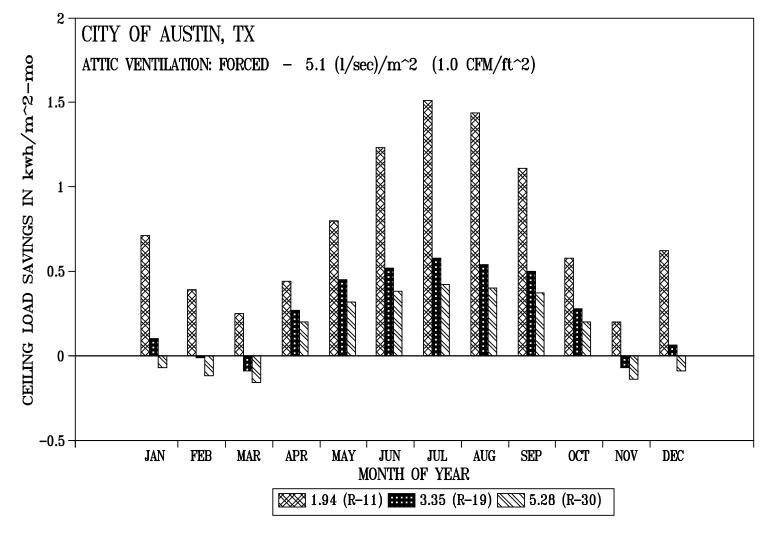

Modeling

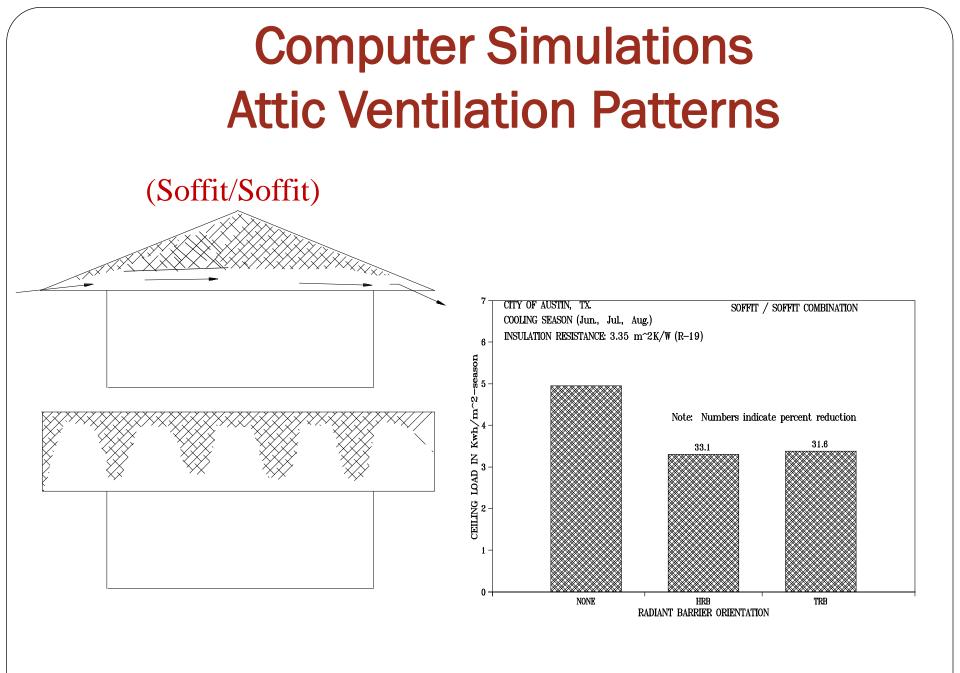
Model Verification vs Exp. Data (HRB)

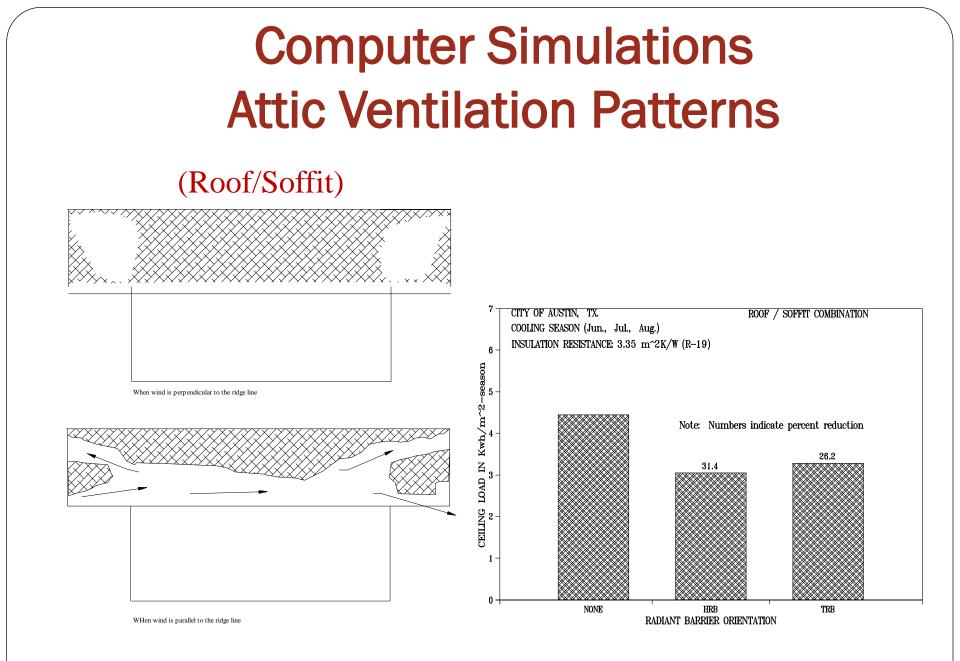


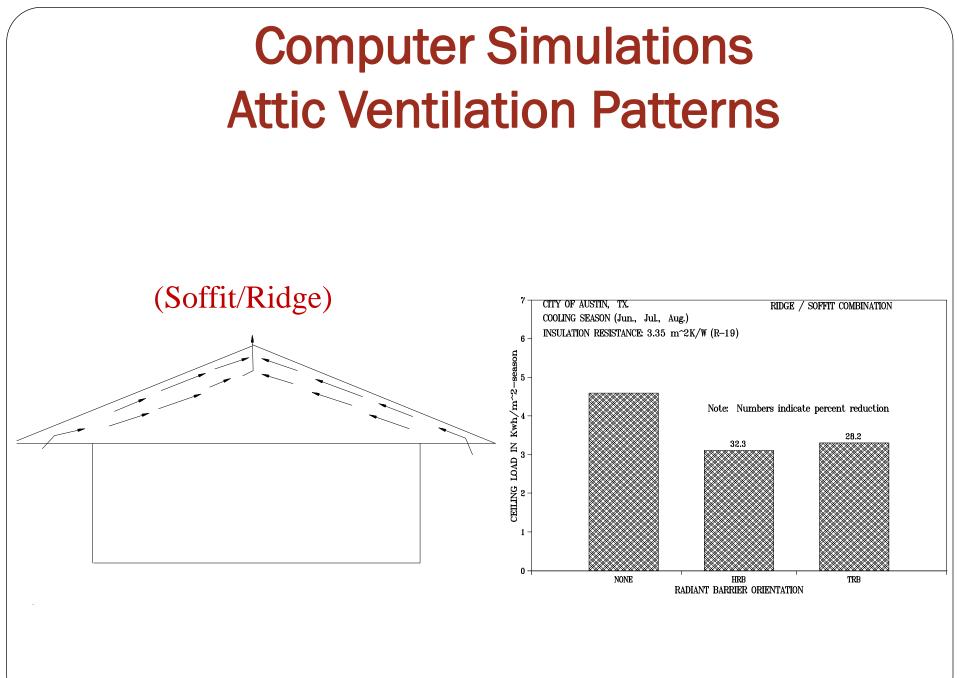
Modeling

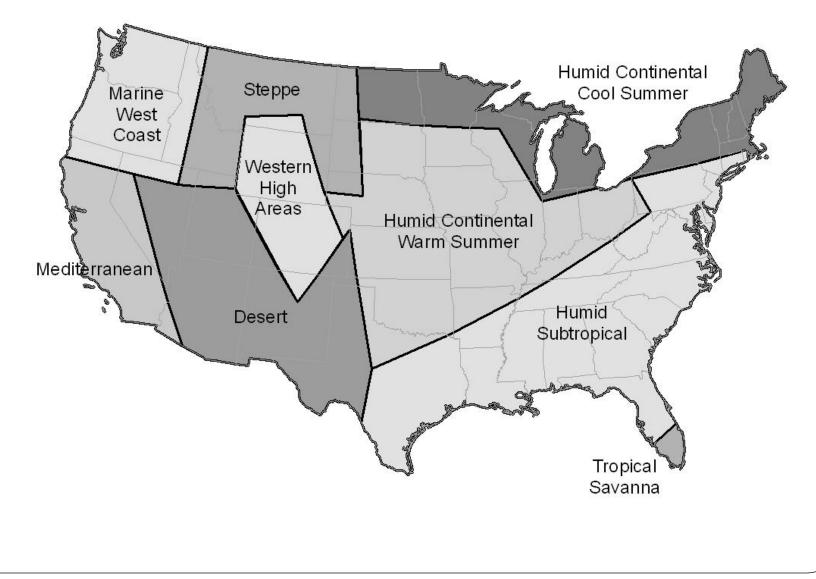

Model Verification vs Exp. Data (TRB)

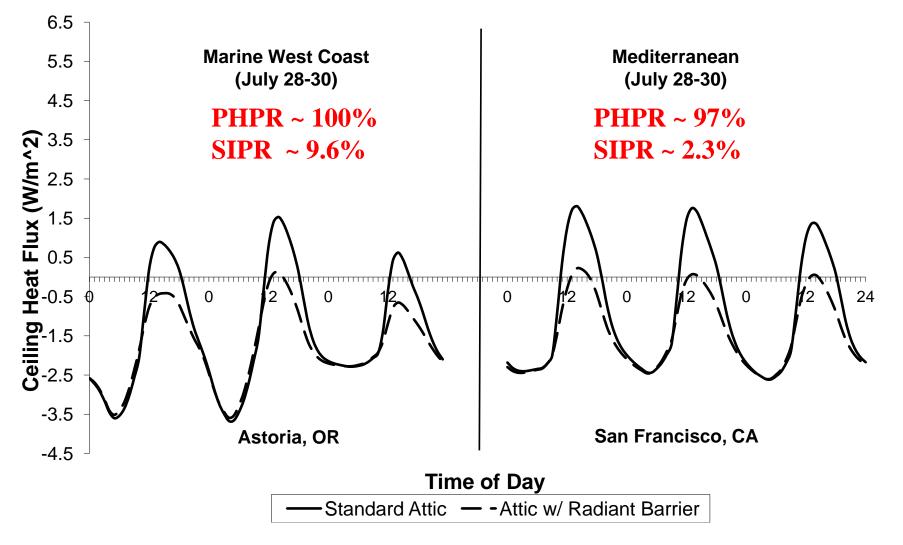

Modeling Model Verification vs Exp. Data (Winter)

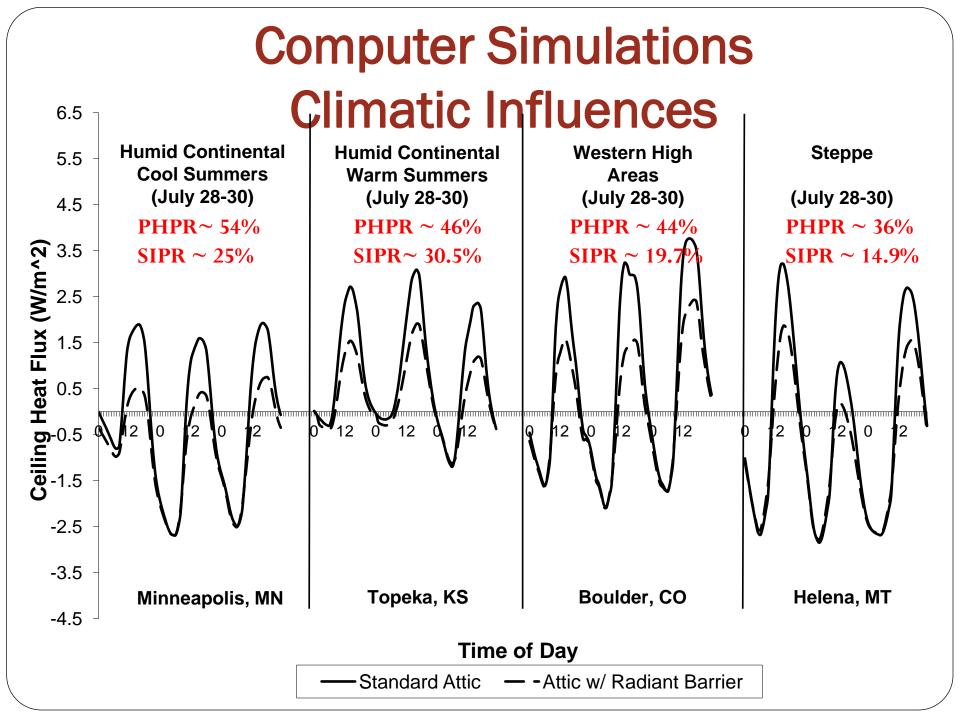


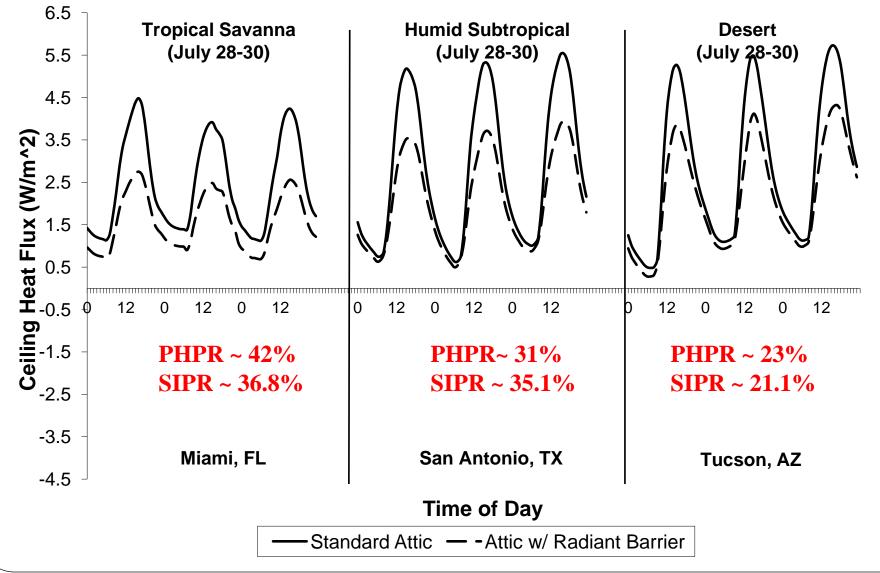

Computer Simulations Yearly Performance

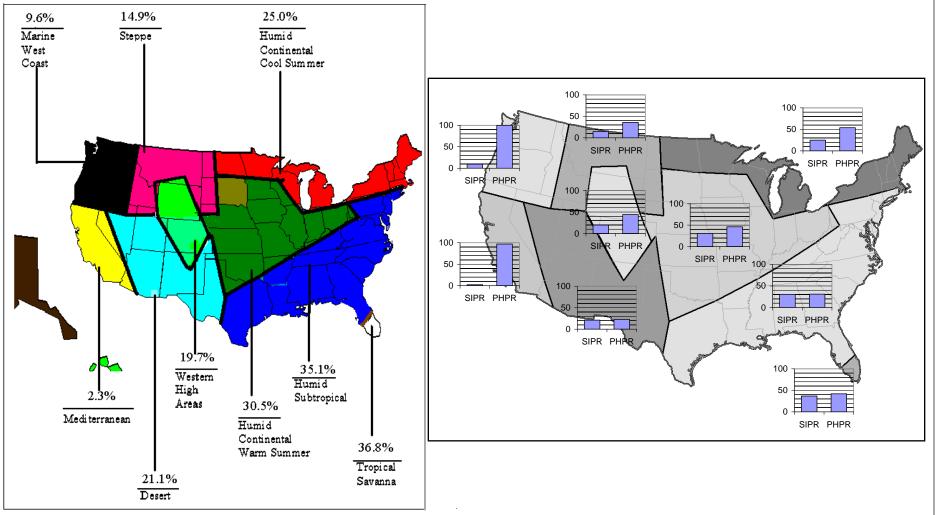



Computer Simulations Yearly Performance

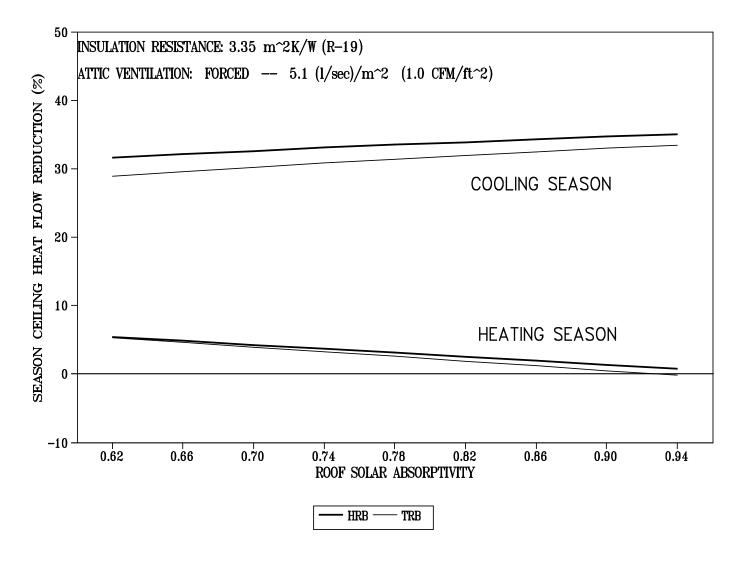


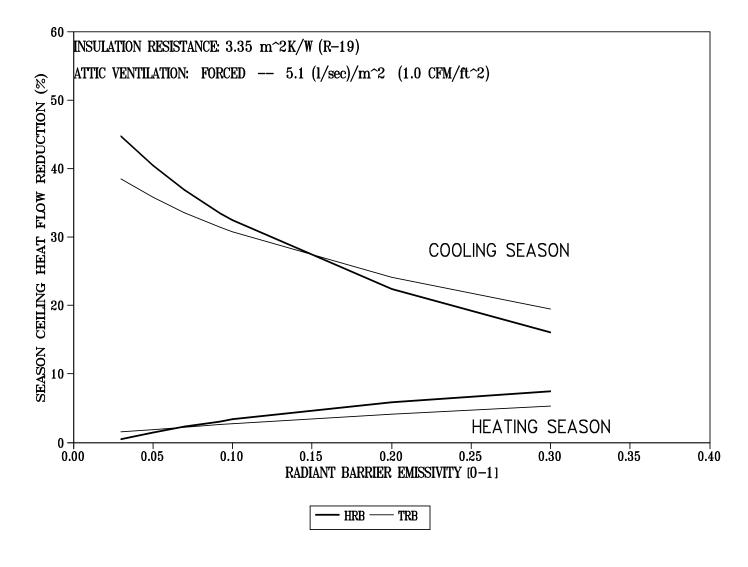



Summer weather data for Continental United States


Climate	Summer Monthly Dry Bulb Temperature	Summer Monthly Relative Humidity	Summer Monthly Wind Speed
	(°F)	(%)	(mph)
Marine West Coast	59	80	8.3
Steppe	62	43	7.9
Humid Continental Cool Summer	70	67	8.7
Mediterranean	63	74	10
Desert	83	47	8.1
Western High Areas	68	50	8.5
Humid Continental Warm Summer	77	70	8.8
Humid Subtropical	84	68	8.5
Tropical Savanna	83	77	8

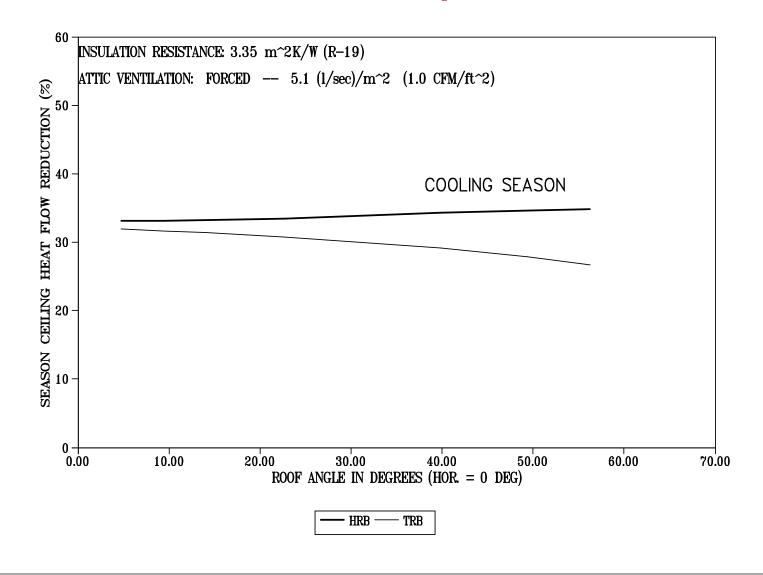
PHPR: Peak Hour Percent Reduction SIPR: Summer Integrated Percent Reduction

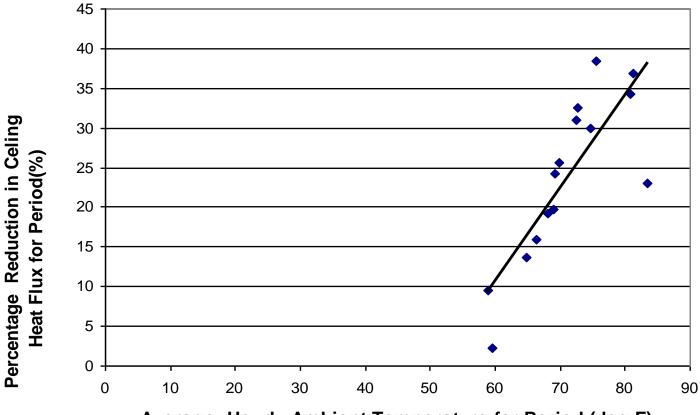




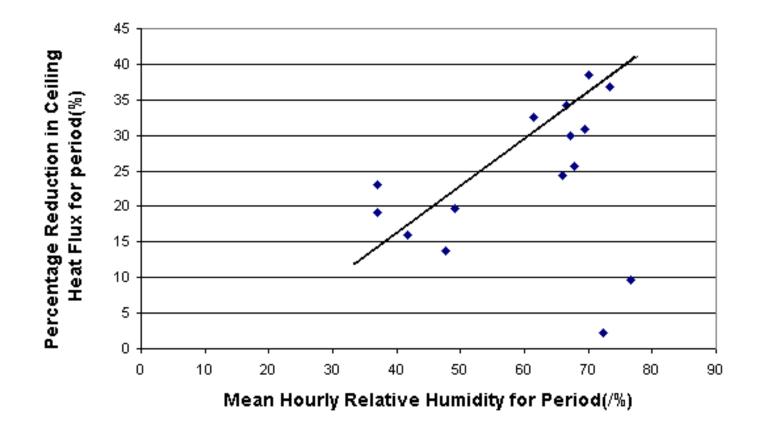
Climate	Sample Station	Sample Summer Integrated Percent Reduction (SIPR) (%)	Average	Peak-Hour Percent Reduction (PHPR) (%)
Humid Subtropical	San Antonio, TX New York- NY Atlanta, GA	34.3 32.5 38.5	35.1	31
Humid Continental Warm Summer	Topeka, KS Indianapolis, IN	30.0 30.1	30.5	46
Desert	Las Vegas, NV Tucson, AZ	19.2 23.0	21.1	23
Humid Continental Cool Summer	Minneapolis, MN Detroit, Michigan	25.7 24.3	25.0	54
Steppe	Pocatello, ID Helena, MT	16.0 13.7	14.9	36
Marine West Coast	Astoria, OR	9.6	9.6	~100
Mediterranean	San Francisco, CA	2.3	2.3	97
Western High Areas	Boulder, CO	19.7	19.7	44
Tropical Savanna	Miami, FL	36.8	36.8	42


Parametric Analyses Roof Solar Absorptivity

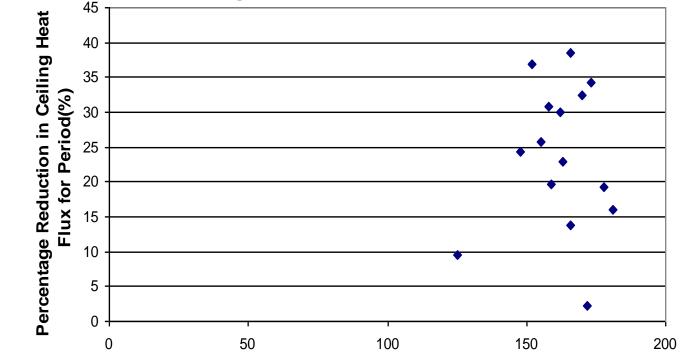

Parametric Analyses Radiant Barrier Emissivity


Parametric Analyses Attic Airflow Rate

Parametric Analyses Roof Slope



Parametric Analyses Outdoor Air Temperature



Average Hourly Ambient Temperature for Period (deg F)

Parametric Analyses Mean Hourly Relative Humidity

Parametric Analyses Mean Hourly Global (H) Radiation

Mean Hourly Global Horizontal Solar Radiation for period(Btu/h-sf)

Conclusions

- On average, RBs reduce summer ceiling heat flows by approximately 23 to 45% depending on the insulation level. Winter ceiling heat flow reductions are approximately 40% of the summer values for the same insulation levels.
- Space cooling loads are reduced by 6 to 20% and space heating load reductions would be approximately 40% of the space cooling load reductions for the same insulation levels.
- IRCCs with an emittance of 0.25 or less would provide reductions in ceiling heat flows equivalent to 61% of the values produced by RBs.
- DARBs and TRBs would reduce attic temperatures by an average of 13 °F, while RBs in the HRB configuration would reduce the attic temperature by an average of 4 °F

Conclusions

•Climate (e.g., temperature and humidity) and radiant barrier emissivity have first order effects on the performance of radiant barriers.

•Attic ventilation flow rate, amount of solar radiation, shingle color, roof pitch have little to no effect on the performance of radiant barriers.

THANK YOU