

BERKELEY LAB

Backdrafting Overblown! Rethinking Combustion Appliance Safety

Brett Singer & Vi Rapp bcsinger@lbl.gov vhrapp@lbl.gov

February 26, 2014 RESNET, Atlanta, GA

Why do we conduct combustion safety tests?

What are we worried about?

What are we trying to prevent?

Singer & Rapp

Feb 26, 2014

What are the most <u>severe</u> combustion appliance hazards?

What are the most <u>common</u> combustion appliance hazards?

What level of health risk are we willing to tolerate?

Feb 26, 2014

Singer & Rapp

Key Point: Objectives

Critical: Identify appliances and venting systems that are broken or likely to break.

Critical: Identify gas leaks and other life-safety hazards.

Important: Identify appliances that cannot reliably establish draft under conditions that are likely to be encountered.

Natural draft appliance + airtight home = DANGER

Source: Moore, Rich (2011). CAZ Pressure Testing. ACI Presentation, March, Denver, CO.

Feb 26, 2014

6

Reality: more deaths by lightning than by furnace or water heater CO

U.S. average 2005-2007: 184 deaths / year from unintentional CO poisoning

Health hazards associated with combustion appliances

Life-Safety

 CO at level that impairs judgment, creates risk of more severe effects including death (100+ ppm CO)

Acute

 Impacts sensitive individuals when CO & NO₂ exceed outdoor air quality standards (10-50 ppm CO; 100-200 ppb NO₂)

Chronic

 Low-level exposures over periods of weeks or more (5-10 ppm CO) Singer & Rapp

Acute ambient CO levels that could result in hospitalization or death

Ambient Concentration	Exposure	Symptoms
100 ppm	2-3 hours	Slight Headache
200 ppm	2-3 hours	Headache, Nausea
400 ppm	2-3 hours	Life threatening
800 ppm	2 hours	Death

GOLDSTEIN, M. Carbonmonoxidepoisoning. Journal of Emergency Nursing 34,6 (December 2008), 538-542.

CO standards to protect sensitive subpopulations of general population

Organization	1 hour average (ppm)	8 hour average (ppm)	
National Ambient Air	35	0	
Quality Stds	55	3	
California Ambient Air	20	0	
Quality Stds	20	9	
Health Canada	25	10^{**}	
Consumer Product	25	15	
Safety Commission	25	13	

** 24 hour time-weighted average

Health hazards associated with combustion appliances

Life-Safety: Must NEVER happen

• Requires extreme failure of burner and venting; not just depressurization-induced spillage

Acute: Costly to eliminate; must manage

Sustained spillage + problem with combustion

Chronic: Minimal risk achievable

- Requires routine spillage + compromised combustion
- Moisture can can still be a problem even if CO low

Visual inspection

http://blog.greenhomesamerica.com/2009/12/22/dont-mess-around-with-appliance-venting/

Singer & Rapp

- Visual inspection
- Spillage Test

http://www.metrohome.us/

Feb 26, 2014

Singer & Rapp

- Visual inspection
- Spillage Test
- Flue CO Test

http://www.htownhomeinspector.com/node/56 http://www.plumbtechnj.com/wp-content/uploads/2012/09/Carbon-monoxide-awareness.jpg

Singer & Rapp

Feb 26, 2014

- Visual inspection
- Spillage Test
- Flue CO Test
- Worst-case
 Depressurization

- Visual inspection
- Spillage Test
- Flue CO Test
- Worst-case
 Depressurization

Backdraft Intro: consider a 6 ACH50 house with a natural draft furnace...

Operate a 375 cfm range hood... No problem

Air-seal to 4 ACH50 and you are likely to fail a combustion safety test

Is this really a problem?

What determines if there is a problem?

- Is appliance really not able to establish draft at -7 Pa?
- How often is there 375 cfm of exhaust with burner on?
- Does spillage occur long enough to create a hazard?
- How does exhaust flow impact buildup of exhaust gases and pollutants?

Combustion hazards depend on both physics and statistics

• How much CO emitted?

- Is appliance really not able to establish draft at -7 Pa?
 - Vent configuration
 - Atmospheric conditions
- How often is there 375 cfm of exhaust with burner on?
- Does spillage occur long enough to create a hazard?
- How does exhaust flow impact buildup of exhaust gases and pollutants?

Worst-Case Depressurization Test

Threshold Test: Compare to depressurization limit **Draft Test:** Does the appliance draft under WCD?

Depressurization limits

BPI

Orphan natural draft water heater	-2 Pa
Natural draft boiler or furnace commonly vented with water heater	-3 Pa
Individual natural draft boiler or furnace Induced draft boiler Furnace commonly vented with a water heater	-5 Pa
Power vented or induced draft boiler or furnace along, or fan assisted DHW alone	-15 Pa

RESNET

Atmospheric vented oil or gas system	-5 Pa
Pellet stoves with exhaust fans and sealed vents	-15 Pa

24

What is the basis of these limits?

BPI

Orphan natural draft water heater	-2 Pa
Natural draft boiler or furnace commonly vented with water heater	-3 Pa
Individual natural draft boiler or furnace Induced draft boiler Furnace commonly vented with a water heater	-5 Pa
Power vented or induced draft boiler or furnace alone, or fan assisted DHW alone	-15 Pa

RESNET

Atmospheric vented oil or gas system	-5 Pa
Pellet stoves with exhaust fans and sealed vents	-15 Pa

25

The physics of draft

Depressurization just one part of the equation

2008 ASHRAE Handbook – HVAC Systems and Equipment, Chapter 34

The physics of drafting

Depressurization just one part of the equation

Singer & Rapp

Theoretical draft

28 BERKELEY LAB

Theoretical draft

Friction losses in vent

Friction losses in vent

Friction losses in vent

Depressurization

Worst-Case Depressurization

Threshold Test: Compare to depressurization limit **Draft Test:** Does the appliance draft under WCD?

CVEP is the maximum depressurization an appliance can overcome

Cold Vent Establishment Pressure (CVEP)

- **1. Measure diff. pressure between CAZ and outdoors**
- 2. Depressurize house using blower door
- 3. Turn on the appliance (should be spilling)*
- 4. Lower house depressurization until appliance establishes draft
- 5. Record the differential pressure when the appliance established draft

How much depressurization can water heaters overcome?

Feb 26, 2014

Singer & Rapp

36 BERKELEY LAB
How much depressurization can furnaces overcome?

Weather affects depressurization

Singer & Rapp

Feb 26, 2014

Should we subtract "baseline"?

Are the thresholds saving lives or only limiting tightness?

What is the risk of depressurization induced spillage?

$\mathbf{Risk} = \mathbf{P}_1 \mathbf{x} \mathbf{P}_2 \mathbf{x} \mathbf{P}_3$

- P₁ = probability that conditions exist to cause backdrafting and spillage if the appliance operates
- P_2 = probability that the appliance will operate during the time that the conditions of P_1 persist
- P_3 = probability that the appliance emits pollutants at a sufficient rate to cause an IAQ problem if P_1 and P_2 occur

Data and calculations are needed... Risk = $P_1 x P_2 x P_3$

The probability that conditions exist to cause backdrafting and spillage if the appliance operates depend on:

- Weather conditions throughout the year
- Existing fans and usage patterns
- Appliance location

Data can provide probability an appliance will be operating $Risk = P_1 \times P_2 \times P_3$

- 143 California homes showed a maximum continuous ontime of 139 minutes in 8 hours for water heaters
- Wall furnace could operate continuously
- Data for central furnaces & boilers?

Data can provide probability of appliance pollutant emission rates

■ Furnaces □ Water Heaters

1,427 homes in Twin Cities, MN

Bohac, D., et al., Ventilation and Depressurization Information for Houses Undergoing Remodeling (2002)

Data can provide probability of appliance pollutant emission rates

1,427 homes in Twin Cities, MN

Calculating pollutant concentrations and risk

46

BERKELE

What are ppm anyway?

$100 ppm CO = \frac{100 parts CO}{1,000,000 parts Air}$

$10 ppm CO = \frac{10 parts CO}{1,000,000 parts Air}$

How do we get to danger?

Given:

40,000 btuh water heater -> 40 ft³ fuel / h Need roughly 10 ft³ air per ft³ fuel -> 400 ft³ exhaust per hour

Assume:

1000 ppm CO in exhaust
10,000 ft³ home (1250 sf x 8 ft ceiling)
1 h of spillage with no ventilation

$$\frac{1000\,ppm\,CO \times 400\,ft^3}{10,000\,ft^3} = 40\,ppm\,CO$$

This is a health hazard but not a life-safety hazard

Feb 26, 2014

But we can't assume no ventilation... That's how we get depressurization!

40,000 btuh appliance spilling for five minutes of every hour

For a house half the size, pollutant levels would be twice as high

51

What do simulations and data tell us?

- Greatest hazard is when flow just reverses (lowest dilution)
- Increasing depressurization increases exhaust airflow, which dilutes any emitted CO
- Halving the house size, ACH50, or doubling the appliance size, doubles ambient CO
- BPI and RESNET CO and depressurizations limits are overly conservative
- Recommend use of range hood when cooking
- Advise against unvented heaters and fireplaces

Unvented combustion appliances pose the highest health risk

Appliance	Pollutant Exposure Risk
Induced Draft	<u>Very Low</u> : Unlikely to backdraft and spill
Water heater	Low: non-continuous operation; vented
Vented furnace	<u>Medium-Low</u> : Possible long-term operation; vented; wall furnaces can have lower draft
Range & Ovens	<u>Medium-high</u> : 100% spillage in living space; some venting through range hood, higher CO
Unvented heater	<u>High</u> : 100% spillage in living space; possible long-term operation; higher CO and NO ₂

Recommendations: Combustion Safety Diagnostics

Focus first on basic safety

- Proactively check for unvented heating. Primary appliance has to work. Ask about other heaters including oven
- Inspect for gas leaks; check appliance burner, flue, combustion air to CAZ
- Check vent sizing and horizontal runs

Focus on finding appliances that could backdraft often

- Depressurization draft test with exhaust fans that can run for extended periods (dryer, bathroom; no range hood on high).

Add safety by checking CO during induced downdraft

Confirm range hood is venting & advise it be used

Other Random Thoughts

- At <2 ACH50, most likely need sealed combustion
- At >5 ACH50, required exhaust flows high enough to protect
- We should not try to use WCD diagnostics to find the one in a million hazard scenario
- May be able to develop rule of thumb by comparing sum of exhaust fans to cfm50

Combustion safety best ensured with direct-vent combustion

Challenges

- Are there CAZ configurations that can become dangerous under rare conditions?
 - Example: backdraft in poorly ventilated space depletes oxygen, creates combustion problem.
 - Is this a real problem or too rare to be a concern?
 - How do we diagnose this potential hazard?
- Effective kitchen exhaust combined with a dryer produces substantial depressurization in a tight house

Take Home Points

- Life-safety hazards almost always result from broken appliances and venting
- Depressurization-induced spillage is a problem when it happens frequently
- High flows to cause depressurization are safety feature
- Unvented combustion appliances require particular attention as they are effectively "spilling" 100% of the time

If time permits...

(It didn't. Reader is cautioned to not refer to information in these extra slides without contacting presenter to confirm accurate understanding.)

Furnaces

Feb 26, 2014

Continuous spillage for 8-hours reaches a steady-state concentration

- 1200 sqft home; ACH50=4; 20 kBTU/hr appliance
- **8-hours of spillage**; -5 Pa depressurization

What about a larger furnace? Doubling size doubles indoor CO concentrations

- 1200 sqft home; ACH50=4; 40 kBTU/hr appliance

- **8-hours of spillage**; -5 Pa depressurization

Larger depressurization <u>reduces</u> ambient CO concentrations

- 1200 sqft home; ACH50=4; 40 kBTU/hr appliance

- Continuous Spillage (Steady-state concentrations)

A wall furnace has less effect on ambient CO in larger homes than smaller homes

ACH50=4; 20 kBTU/hr wall furnace
<u>Spilling continuously</u> (Steady-state concentrations)

A wall furnace has less effect on ambient CO in larger homes than smaller homes

Simulations can be used as a screening tool to identify problematic conditions

Appliance flue air-free CO in 40 kBTU/hr appliance **spilling continuously** to maintain specified concentrations (steady-state) 1200 sq. ft., 4 AHC50

Simulations can be used as a screening tool to identify problematic conditions

Appliance flue air-free NO₂ in 40 kBTU/hr appliance **spilling continuously** to maintain specified concentrations (steady-state)

Simulations can be used as a screening tool to identify problematic conditions

Appliance flue air-free CO in 20 kBTU/hr wall furnace <u>spilling</u> <u>continuously</u> to maintain specified concentrations (steady-state)

Water Heaters

Feb 26, 2014

Water heaters sometimes operate continuously over 1h

Water heater operation in 143 California homes

- 95th percentile: 59 min
- 75th percentile: 50 min
- Mean: 40 min

Simulation shows 1h of WH backdraftinduced spillage is not a life-safety issue

- 1200 sqft home; ACH50=4; 40 kBTU/hr appliance;

- 59 minutes of spillage; -2 Pa depuressurization

Water heaters don't operate continuously over longer periods: data over 4h period

BERKELEY

Water heaters don't operate continuously over longer periods: data over 8h period

Simulation shows 8h of WH backdraftinduced spillage is not a life-safety issue

- 1000 sqft home; ACH50=4; 40 kBTU/hr appliance, 400 ppm CO-AF
- <u>139 minutes of spillage</u>, -2 Pa depressurization

Cooking

Feb 26, 2014

Singer & Rapp

Estimated exposures to pollutants from natural gas cooking burners in SoCal

Using LBNL's Population Impact Assessment Model

Apply to large sample of homes that cook with gas

Data from RASS:

- Data on age, size
- Demographics
- Cooking frequency
- NHAPS occupancy patterns
- Emissions measured from used stoves.
- Cooking times from surveys

Singer & Rapp

Simulations show many homes exceeding air quality standards when no range hood is used

Use of 55% efficient range hood reduces exceedances

Measurements show that cooktops are most common problem in California

Results from 5-6 day monitoring in ~350 California homes

Unvented Heaters and Fireplaces

Singer & Rapp

Room concentrations follow CO concentrations from unvented fireplaces (also see notes for % failures)

Francisco, D., et al., Measured concentrations of combustion gases from the use of unvented gas fireplaces (2010)

Prevent use of unvented heaters and fireplaces

- Located in the living space and continuously spill combustion gases
- Increase risk CO, NO₂, and moisture problems
- Produce 1qt/hr of water vapor
- Canada and many U.S. states ban the use of unvented heaters

http://ventyes.org/

80 BERKELEY LAB