

The Basics of Manual J

RESNET Building Performance Conference, Atlanta GA February 24th, 2014

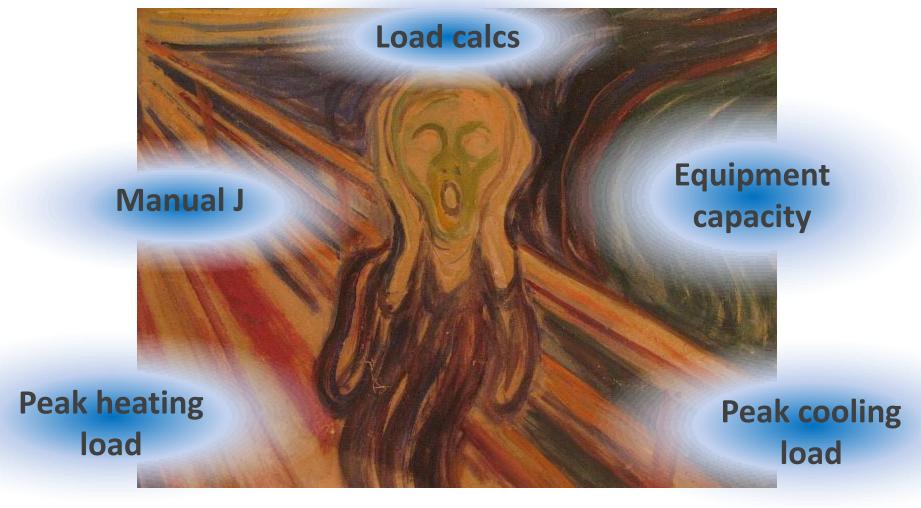
Learn more at energystar.gov

- Basic concepts behind load calculations.
- The value of accurate load calculations.
- Impact on load from right and wrong values for key inputs.
- Challenges to accurate load calculations.
- Question and answer session.

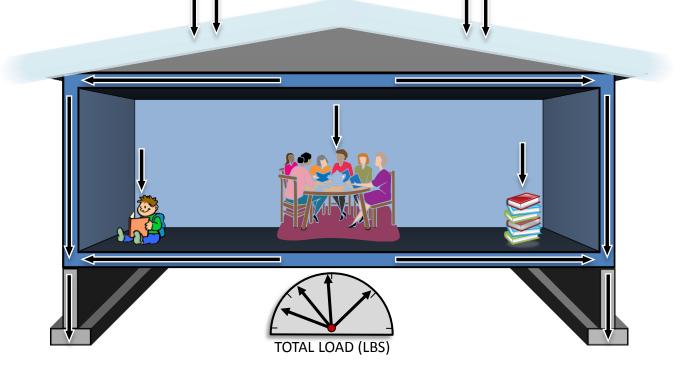
Poll question #1

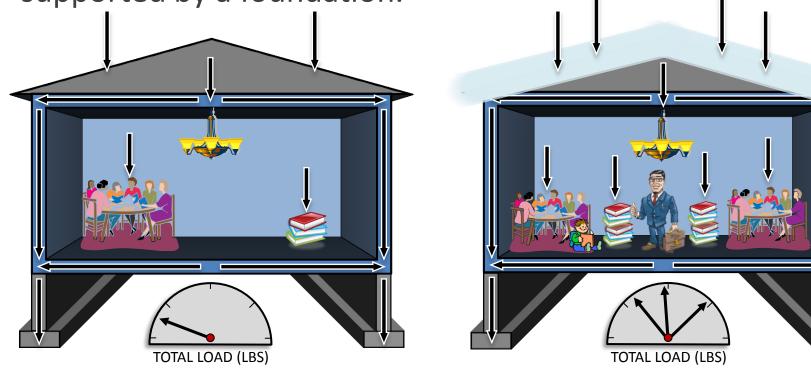
- How familiar are you with the concept of calculating loads using Manual J?
 - A. Very familiar I could do that with my eyes closed.
 - B. Somewhat familiar Maybe I could do that if my life depended on it.
 - C. Unfamiliar You're speaking Greek to me.

Poll question #2

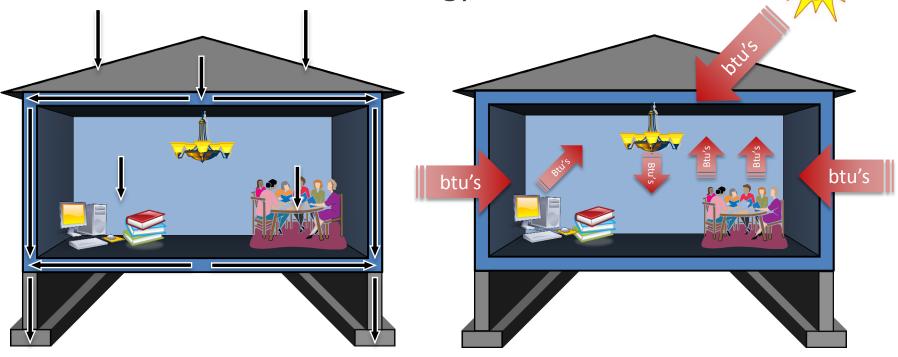


- How would you rate the importance of doing accurate heating and cooling load calculations?
 - A. Very important.
 - B. Somewhat important.
 - C. Not important.
 - D. Not sure.

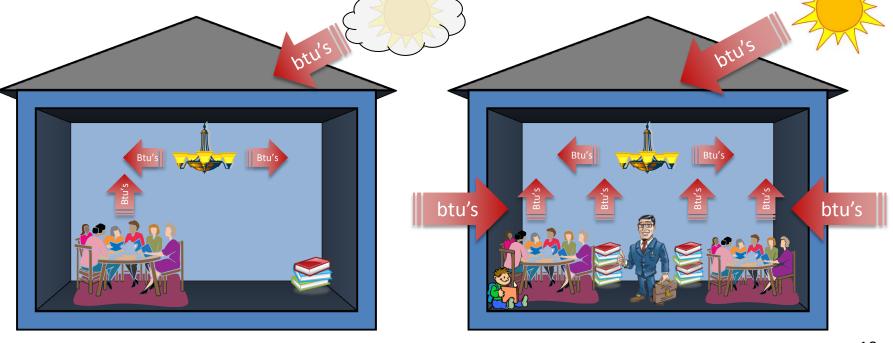

Basic concepts behind load calculations



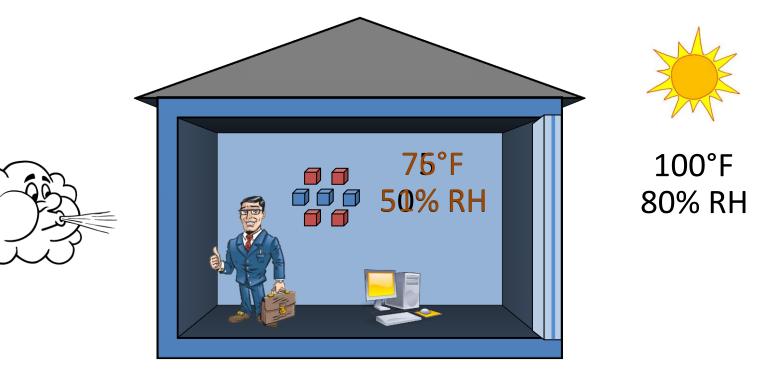
• Structural Load: The weight that must be supported by a foundation at any particular time.



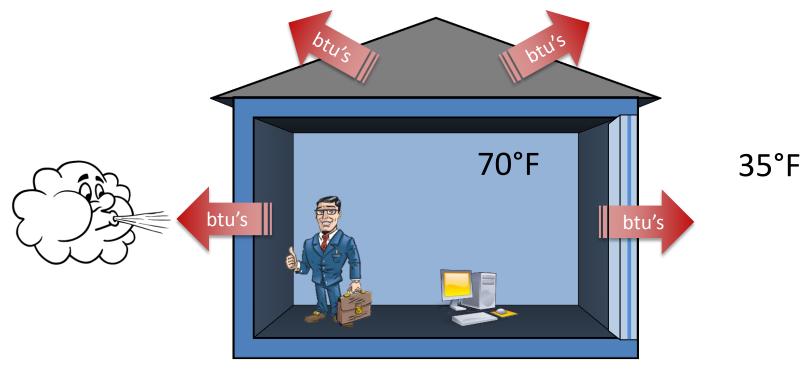
- <u>Structural Load</u> varies for each hour of the year.
- <u>Structural Peak Load</u>: The maximum weight that must be supported by a foundation.



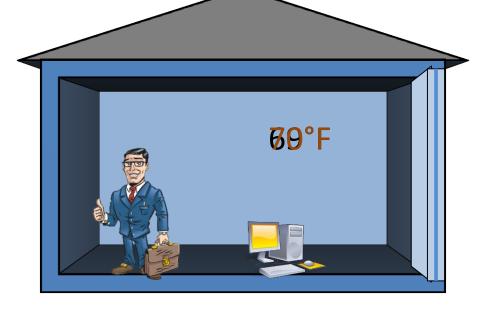
- Structural load measured in pounds of weight..
 ..Cooling load measured in btu's of energy.
- 1 btu has about the same energy as 1 match.

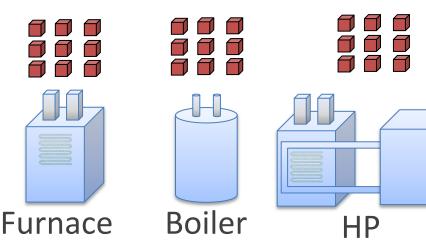


- <u>Cooling Load</u> varies for each hour of the year.
- <u>Cooling Peak Load</u>: The maximum energy that's added to the home in a single hour, and must be removed to maintain temperature and humidity.

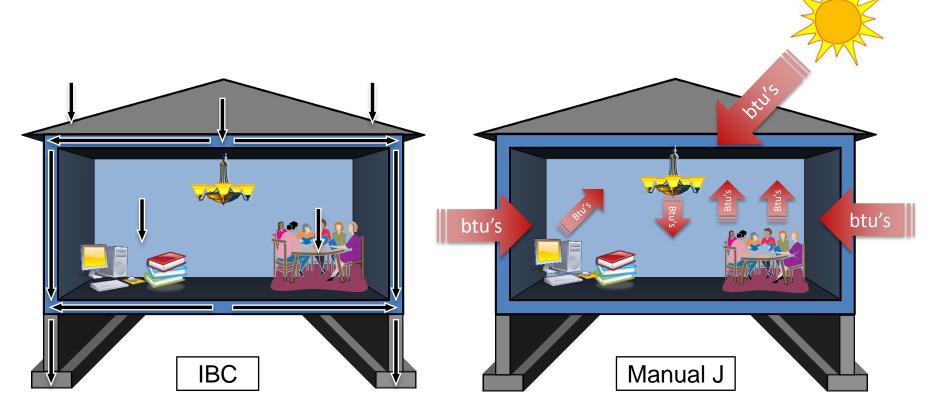


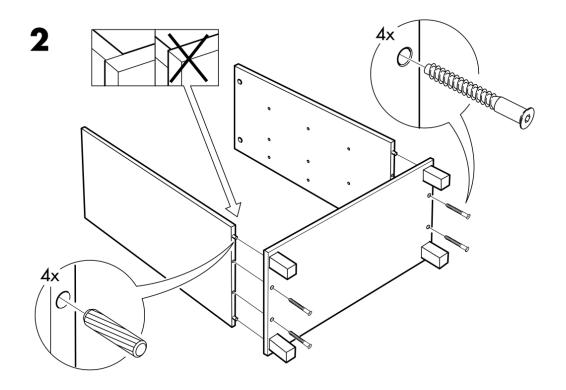
- <u>Sensible Cooling Load</u>: Btu's added to the home that increase temperature.
- <u>Latent Cooling Load</u>: Btu's added to the home that increase relative humidity.




- <u>Heating Load</u> varies for each hour of the year.
- <u>Heating Peak Load</u>: The maximum energy that lost from the home in a single hour, which must be added back to maintain temperature.

- Cooling & heating equipment are "btu machines" that add or remove btu's to offset the load.
- The cooling and heating load tell you how many btu's the equipment has to be capable of removing or adding.
- Load is independent of the <u>type</u> of equipment that will be used.




Cooling & heating loads are calculated using a standard process

 usually ACCA's Manual J.

- Process is able to be repeated by someone else.
- ACCA recognized Manual J programs:
 - www.acca.org/industry/system-design/software

Poll question #3

- What program do you most often use, or see HVAC designers use, to calculate loads?
 - A. Wrightsoft Right-J.
 - B. Elite Software RHVAC.
 - C. FSEC EnergyGauge.
 - D. Other

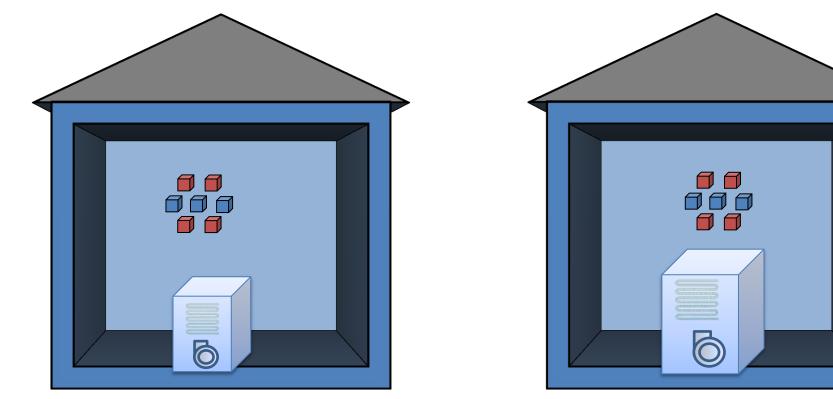
- *<u>Structural load</u>* = # pounds that foundation must support..
- .. *<u>Cooling load</u>* = # btu's that equipment must remove.
- Structural *peak* load = the max. weight..
- .. Cooling *peak* load = the max. btu's / hr equipment must remove.
- ACCA Manual J is the most commonly used standard for calculating cooling and heating loads.



World's Most Uncomfortable Home

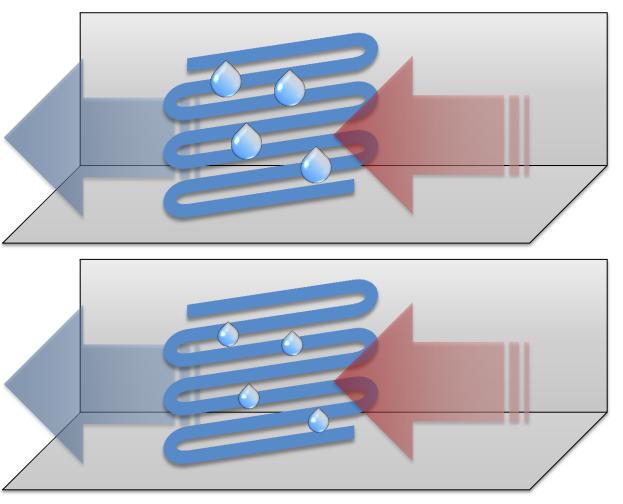


 Heating and cooling equipment generally has just two modes – on & off.



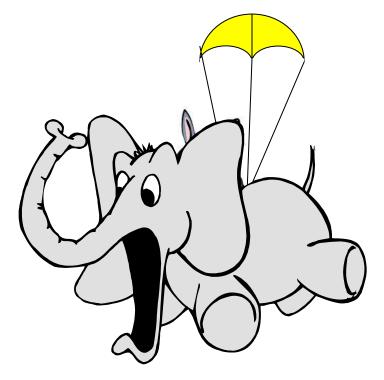
• Selecting a light for your living room:

 Heating and cooling equipment generally has just two modes – on & off.



Calculated too low

Calculated too high


• How AC's control humidity.

- Calculating loads is Step 1 of the HVAC design process. This must be done right for the rest of the steps to work.
- Code requires load calculations to be done for every new home.

Summary of value of accurate loads

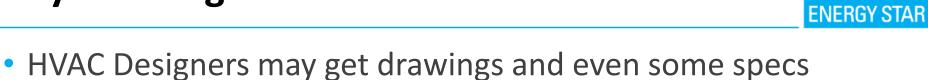
- Almost all HVAC equipment has just two modes on and off.
- If you have the correct loads, you can select equipment that's the right size.
- Equipment that's based on an *undersized load* won't keep up.
- Equipment that's based on an *oversized load* will cycle on & off.
- Equipment that's based on an *accurate load* will best achieve comfort, efficiency, and durability.

Impact on load from right and wrong values for key inputs

- Two home configurations:
 - 2,400 square feet of conditioned floor area.
 - One-story above grade.
 - 15% window area to floor area ratio.
 - Built to the 2009 IECC.
 - One home, with slab, in Houston.
 - One home, with basement, in Pittsburgh.
- Loads calculated using Wrightsoft.

	Houston					
					Coolin	ng Load
					%	
Input Type		Low Input	Correct Input	High Input	Low	High
Baseline		-	32.3 kBtu	-	-	-
Dascinic						

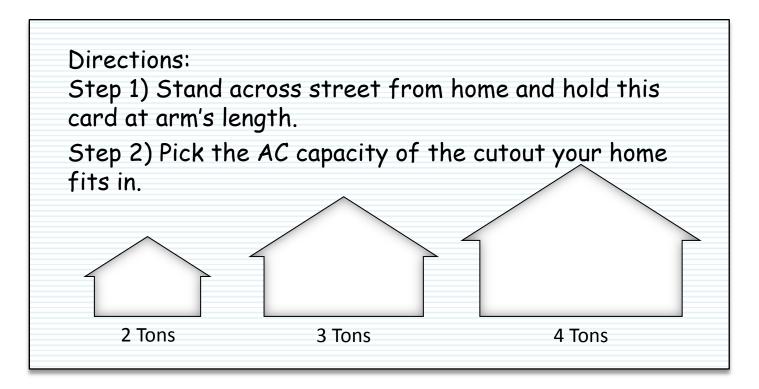
	Houston					
					Coolin	g Load
					9	6
Input Type		Low Input	Correct Input	High Input	Low	High
Baselin	e	-	32.3 kBtu	-	-	-
1	Outdoor Design Temperature	89 F	94 F	99 F	-7%	7%
2	Home Orientation	Ν	E	W	-11%	2%
3	Number of Occupants	1	4	7	-4%	6%
4	Conditioned Floor Area (Sq. Ft.)	2,160	2,400	2,640	-2%	2%
5	Window Area (Sq. Ft.)	324	360	396	-3%	3%
6	Predominant Window SHGC	0.20	0.30	0.40	-7%	4%
Combined Impact From First Six Parameters		22.7 kBtu	32.3 kBtu	40.6 kBtu	-30%	26%


	Pittsburgh					
					Coolin	g Load
_					9	6
Input Type		Low Input	Correct Input	High Input	Low	High
Baseline		-	22.6 kBtu	-	-	-
1	Outdoor Design Temperature	81 F	86 F	91 F	-7%	7%
2	Home Orientation	Ν	E	W	-17%	6%
3	Number of Occupants	1	4	7	-6%	7%
4	Conditioned Floor Area (Sq. Ft.)	2,160	2,400	2,640	-3%	3%
5	Window Area (Sq. Ft.)	324	360	396	-4%	4%
6	Predominant Window SHGC	0.30	0.40	0.50	-6%	11%
Combined Impact From First Six Parameters		14 kBtu	22.6 kBtu	31.7 kBtu	-38%	40%
7	Interior Window Shading	0.64 (light blinds)	0.74 (medium blinds)	0.85 (dark blinds)	-2%	2%
8	Infiltration Rate	Tight	Average	Loose	-1%	2%
9	Mechanical Vent. Rate (CFM)	50	75	100	0%	1%
10	Internal Loads (MJ Scenarios)	1	2	3	-5%	4%
11	Duct Location (% in Cond. Space)	100%	50%	0%	-3%	3%
12	Duct Leakage	Extreme	Notable	Average	-1%	1%
Combin	ed Impact From Last Six Parameters	19.7 kBtu	22.6 kBtu	26.4 kBtu	-13%	17%
Combin	ed Impact From All Twelve Parameters	11.4 kBtu	22.6 kBtu	35.0 kBtu	-50%	55%

- HERS Raters do complete load calculations!
- HERS Raters collect all the data then verify the as-built home
- Compare that to the HVAC Designer

Rater	HVAC Designer	Infiltration Rate
1. Collect detailed building	1. Get home plans and maybe	Duct Leakage
Information from Builder.	specs.	Window SHGC
2. Use REMRate or Energy Gauge to simulate building	Gauge to simulate building loads using Manual J or other	
performance.		
3. Verify all Inputs in REMRate or Energy Gauge match as- built home.	3. Give reports to builder.	Insulation Grade

House specs indicate R-15 walls...


What the designer thinks will be installed...

What is actually installed...

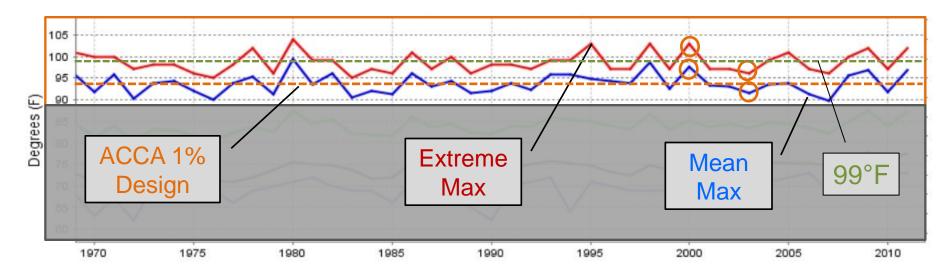
- Can be difficult to get all of the correct inputs.
- Designers often use intuition: sometimes a little, sometimes a lot.


- ENERGY STAR helps overcome challenges by requiring:
 - Complete thermal enclosure system in every home.
 - Designers document several key inputs into load calculation.
 - Raters verify these inputs match actual home.

- Some designers prefer to keep doing what they've always done.
- Some designers have yet to invest in load calc. software and training.
- Some designers have to have faith until they gain experience with Manual J.

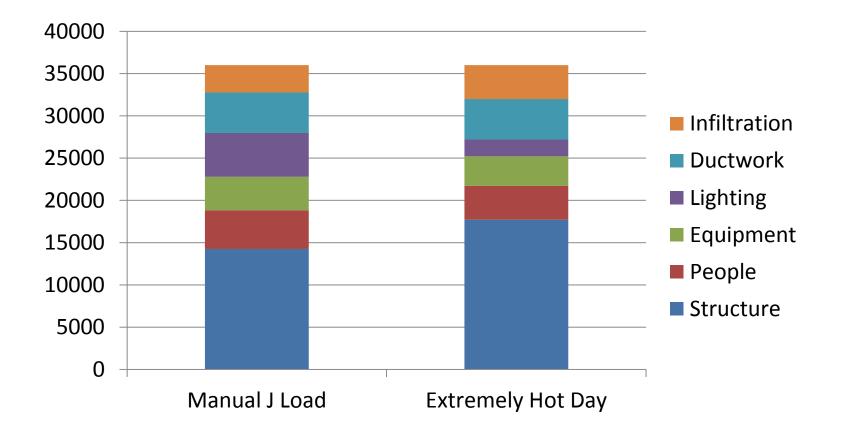
e faiť**h'i**æ gotta ′ faith-a fait (1987©eorge M

NOAA Actual Houston Temperature Data 2000 through 2009


- 10 year average 1.2% hours were hotter than the design temperature of 94°F.
- 8 of 10 years that 1% of hours or less above 94°F

What about the other two years?

2000	1.6%
2009	3.6%


Houston July Temperatures

- Manual J requires use of 1% summer cooling design temp.
- In a typical year, ~1% of hours are expected to be hotter.
- For the Houston Airport, the 1% design temperature is 94°F.

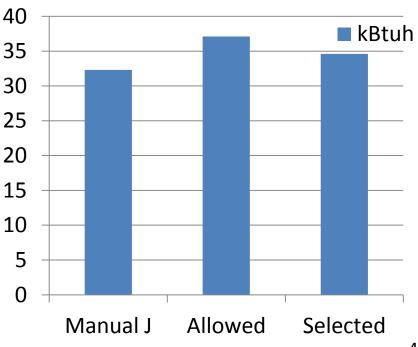
• Just because the outdoor temp is above the design temp, this does not always mean the peak load increases.

- There's a safety factor built into Manual J
- Using absolute max temperature will compromise performance of AC system during all remaining hours.
- Shameless Plug

ACCA Manual S Basics for ENERGY STAR Certified Homes NEXT Session- Right here in the Augusta Room

- ACCA Manual S allows 15% capacity above Manual J load.
- Sample one-story slab home in Houston with 2,400 square feet of CFA, 15% window area to floor area. Built to the 2009 IECC.

Cooling Load @ 94F

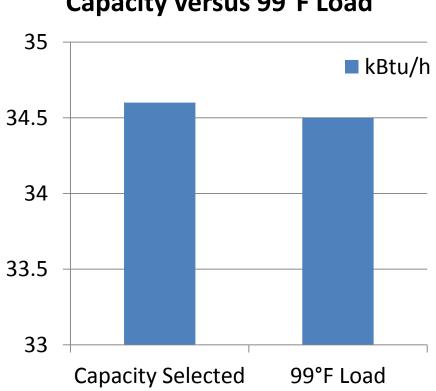

= 32.3 kBtu/h

Allowed Cooling Capacity

- = 32.3 x 115%
- = 37.1 kBtu/h

Selected Cooling Capacity

- = 32.3 x 107%
- = 34.6 kBtu/h



Equipment Sizing

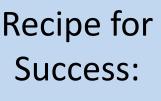
- What if its 99°F outside?
- How many btu's would you have to remove at 99F?
- Cooling Load @ 99F = 34.5 kBtu/h

Capacity versus 99°F Load

Summary of key challenges to accurate load calculations

- Not every designer does accurate load calculations today.
- Oftentimes, they rely on intuition because they don't have all the inputs.
- Also, some designers have to invest in software and training.
- ENERGY STAR helps ensure that accurate loads are calculated.
- Manual J has a safety margin built in. Designers faithfully using it have found that it produces accurate loads.

Summary


- A structural load tells us the pounds a foundation must support;
 A cooling load tells us the btu's HVAC equipment must remove.
 A heating load tells us the btu's HVAC equipment must add.
- ACCA Manual J is most common method for calculating loads.
- Equipment that's based on an accurate load will best achieve comfort, efficiency, and durability.

Summary

- Designers rely on intuition because:
 - Don't have correct inputs,
 - Not trained on the load calc.
 software, or
 - Haven't relied on Manual J for loads in the past.
- Using the correct inputs is critical to calculating the correct loads.
- ENERGY STAR can help
- Calculating proper loads is the first step in turning HVAC design from an art into a science.

Step 1: Use accurate Inputs to calculate accurate Heating and Cooling Loads

Step 2: Size the ...

Solutions for working through Manual J

- **1**. Ensure Designer is designing correctly
 - How do Manual J inputs reach Designer?
- 2. Paper Management is a headache
 - How does the paperwork flow throughout the Rating process?

Solutions:

- Hold a kick off meeting to discuss the work flow.
- Transition documents by having folder on the HVAC unit

ENERGY STAR Certified Homes

Web:

Main:	www.energystar.gov/newhomespartners
Technical:	www.energystar.gov/newhomesguidelines
Fraining:	www.energystar.gov/newhomestraining
HVAC:	www.energystar.gov/newhomesHVAC

Email:

energystarhomes@energystar.gov

Social Media:

@energystarhomes

facebook.com/energystar

Dean Gamble

U.S. EPA Technical Manager, ENERGY STAR Certified Homes Gamble.Dean@epa.gov

Charlie Haack

ICF International Account Manager, ENERGY STAR Certified Homes <u>Charlie.Haack@icfi.com</u>

Joe Schambach

ICF International Technical Support, ENERGY STAR Certified Homes Joe.Schambach@icfi.com

