‘Decoding’ Thermal and Ignition Barrier Requirements for SPF

RESNET 2012 Conference
February 27, 2012
Austin, Texas

Rick Duncan
Technical Director
Spray Polyurethane Foam Alliance

COPYRIGHTED MATERIALS
This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of any part of this presentation without written permission of the speaker is prohibited.
COPYRIGHTED MATERIALS

This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of any part of this presentation without written permission of the speaker is prohibited.

© 2011 Spray Polyurethane Foam Alliance
Who is SPFA?

• **Spray Polyurethane Foam Alliance**
 – 1979: Urethane Foam Contractors Association (UFCA)
 – 1987: Polyurethane Foam Contractors Division of the Society of the Plastics Industry (SPI)
 – 1999: Affiliated with the American Chemistry Council (ACC)
 – 2003: independent trade association for contractors, manufacturers and distributors of polyurethane foam, equipment, protective coatings, inspections, surface preparations and other services.
 – Strong relationship with the ACC’s Center for Polyurethanes Industry (CPI) and Spray Foam Coalition (SFC)
What does SPFA do?

• **Education and Research**
 – Accreditation and Education Programs
 – Technical Guidelines
 – Technical Helpline (1-800-523-6154)
 – Industry Research Programs

• **Promotion and Awareness**
 – Regulatory and Legislative Activities
 – Promotional and Marketing Tools
 – Website www.sprayfoam.org
 – Annual Spray Foam Conference and Exposition
 – Directory and Buyers' Guide

©2011 Spray Polyurethane Foam Alliance
Objectives

• Why Do Codes Require Thermal or Ignition Barriers?
• Fire Testing Basics
• What is a Thermal Barrier?
• What is an Ignition Barrier?
• Inspection and Verification
• Application Examples per Model Building Code
Why Do Codes Require Ignition and Thermal Barriers?

• SPF, like most organic materials, is combustible
 – Unprotected SPF will ignite when exposed to fire
 – Smoke and combustible gases can accumulate in interior spaces during fire conditions and lead to flashover
 – Flame retardants added to slow flame spread
 – Flame spread measured under controlled conditions (ASTM E84), not representative of actual fire conditions

©2011 Spray Polyurethane Foam Alliance
Why Do Codes Require Ignition and Thermal Barriers?

• Required by ICC Model Building Codes (I-codes)
 – Delays combustion and ignition of SPF
 – Provide extra time needed for worker and occupant egress
 – Requirements for Foam Plastics
 • IBC Chapter 26, Section 2603
 • IRC Chapter 3, Section R316
Fire Testing Basics

• Three categories
 • Surface Burning Characteristics (materials)
 • Room Tests (assemblies)
 • Structural Integrity Tests

• Testing standards from...
 • American Society for Testing of Materials (ASTM)
 • Underwriters Laboratories (UL)
 • National Fire Protection Association (NFPA)
 • Factory Mutual (FM)
Fire Testing Basics: Surface Burning

- **ASTM E84 (UL 723) Tunnel Test**
 - 25’ x 2’ x 2’ Steiner tunnel
 - Req’d for most interior building products
 - Material suspended on tunnel ceiling and ignited by gas burner at one end
 - Speed of flame front → Flame Spread Index (FSI)
 - Optical smoke density at outlet → Smoke Developed Index (SDI)
 - FSI/SDI baseline:
 - 0/0 for fiber-cement
 - 100/100 for red oak
 - 4” material thickness limitation

©2011 Spray Polyurethane Foam Alliance
Fire Testing Basics: Surface Burning

• ASTM E84 (UL 723) Tunnel Test
 • 25’ x 2’ x 2’ Stiener tunnel
 • Req’d for most interior building products
 • Material suspended on tunnel ceiling and ignited by gas burner at one end
 • Speed of flame front → Flame Spread Index (FSI)
 • Optical smoke density at outlet → Smoke Developed Index (SDI)

Surface Burning Test results are for comparative purposes only and not related to real-world fire conditions
Fire Testing Basics: Surface Burning

- Requirements for Foam Plastics (<4”) [IBC 2603.3 / IRC R316.3]
 - Class B is a mandatory requirement
 - FSI ≤ 75 and SDI ≤ 450
 - Class A is an optional requirement (achieved by most SPF insulations) that may be mandatory in certain applications
 - FSI ≤ 25 and SDI ≤ 450
 - Different requirement on low-slope roofs
 - FSI ≤ 75 but no limit on SDI
 - Roof assembly must pass FM4450 or UL1256
Fire Testing Basics: Surface Burning

- Requirements for Foam Plastics (<4”) [IBC 2603.3 / IRC R316.3]
 - Class B is a mandatory requirement
 - FSI ≤ 75 and SDI ≤ 450
 - Class A is an optional requirement (achieved by most SPF insulations) that may be mandatory in certain applications
 - FSI ≤ 25 and SDI ≤ 450
 - Different requirement on low-slope roofs
 - FSI ≤ 75 but no limit on SDI
 - Roof assembly must pass FM4450 or UL1256

NOTE: Surface Burning Test limited to 4” material thickness. Additional testing required for foam plastics to be installed >4”
Fire Testing Basics: Surface Burning

• Requirements for Foam Plastics (>4”)
 • SPF greater than 4” thick to meet certain R-values
 • ASTM E84/UL 723 limited to 4” sample thickness
 • To qualify assemblies greater than 4” thick, special approval testing is permitted [IBC 2603.9 / IRC R316.6]

• Special approval testing is performed on assembly
 • Using one of four large-scale corner fire tests
 • ½” gypsum board between foam and fire source
 • Determines maximum foam thickness intended for use
Fire Testing Basics: Surface Burning

- **ASTM E970 Critical Radiant Heat Flux Test Apparatus**
 - 1m long test panel
 - Used to qualify combustible insulations on attic floor
 - Flame should not progress more than 1 m under minimum heat flux of 0.12 W/m² from suspended gas burner
 - No material thickness limitation
Fire Testing Basics: Room-Corner

• Room Corner Test Procedure
 • Room constructed using typical wall and ceiling assemblies
 • Controlled fire source placed in corner
 • Wood crib or gas burner
 • Fire source ignited and observations recorded
 • Heat Release Rate
 • Temperatures at Ceiling
 • Heat Flux
 • Target Ignition
 • Flame-Over

©2011 Spray Polyurethane Foam Alliance
Fire Testing Basics: Room-Corner
Fire Testing Basics: Room-Corner
Fire Testing Basics: Room-Corner
Fire Testing Basics: Room-Corner
What is a Thermal Barrier?

• Thermal Barrier Requirement [IBC 2603.4 / IRC R316.4]
 • Separate foam plastics from all interior spaces with approved 15-minute thermal barrier
What is a Thermal Barrier?

- Two recognized thermal barrier coverings
 - ½” gypsum board [IBC 2603.4 / IRC R316.4]
 - Prescriptive for walls and ceilings
 - >95% of thermal barrier applications
 - nominal ¾” (19/32”) plywood [IBC Table 721.6.2(1)]
 - Not prescriptive but generally accepted for floors

- Non-prescriptive (equivalent) Thermal Barriers must be approved by large-scale fire testing
What is a Thermal Barrier?

• Approved Thermal Barriers [IBC 2603.4 / IRC R316.4]
 1. Prescriptive Thermal Barrier is ½” gypsum wallboard
 2. Equivalent Thermal Barrier is a coating or covering that must pass two large-scale fire tests:
 • Average temperature rise of the unexposed surface less than 250ºF (120C) after 15 minutes of fire exposure per ASTM E 119 or UL 263
 • Remain in place 15 minutes during specified large-scale fire tests such as NFPA 286, UL 1715, UL 1040 or FM 4880
 -- OR --
 • Comply with NFPA 275 (both test above)
What is a Thermal Barrier?

• Special Approval / Alternate Assemblies [IBC 2603.9 / IRC R316.6]

3. Alternate Assemblies (e.g. Exposed SPF or SPF with a protective covering) must:
 • Remain in place 15 minutes during specified large-scale fire tests such as NFPA 286, UL 1715, UL 1040 or FM 4880
 • Does not need to comply with requirements of IBC 2603.4.
 • Product-Specific Assemblies must be tested:
 • Thermal Barrier Brand A on Foam Brand B
 • Protective coverings may include cementious, fibrous and other proprietary products
What is a Thermal Barrier?

• **No thermal barrier required:**
 - Inside masonry or concrete walls [IBC 2603.4.1.1 / IRC R316.5.2]
 - **Cooler and freezer walls (< 400 SF floor space)*** [IBC 2603.4.1.2-3]
 - Laminated metal wall panels-one story [IBC 2603.4.1.4]
 - **Roofing assembly*** passing UL 1256 [IBC 2603.4.1.5 / IRC R316.5.2]
 - Entry doors [IBC 2603.4.1.7-8 / IRC R316.5.5]
 - Garage doors [IBC 2603.4.1.9 / IRC R316.5.6]
 - Siding backer board [IBC 2603.4.1.10 / IRC R316.5.7]

* SPF applications
What is a Thermal Barrier?

• **No thermal barrier required:**
 • Sill Plates and Headers [IBC 2603.4.1.13 / IRC R316.5.11]
 • Limited to Type V construction
 • Max thickness 3.25”
 • Class A Foam (LD and MD)
What is a Thermal Barrier?

• **No thermal barrier required:**
 • Certain Attics and Crawl Spaces
 • Entry is made only for service of utilities [IBC 2603.4.1.6]
 • Entry is made for repairs and maintenance [IRC R316.5.3]
 • No storage
 • Thermal barrier required between attic/crawlspace and occupied space
 • **Ignition barrier** is required separating foam from certain attic/crawlspace

©2011 Spray Polyurethane Foam Alliance
What is an Ignition Barrier?

• **Ignition Barrier** [IBC 2603.4.1.6 / IRC R316.5.3]

 – Fire protection requirements can be reduced from 15-minute thermal barrier to ignition barrier in **limited-access spaces (certain attics and crawlspaces)**

 – Six prescriptive ignition barriers include:
 • 1 ½” mineral fiber insulation
 • ¼” wood structural panels
 • ⅜” particleboard
 • ¼” hardboard
 • ⅜” gypsum board
 • corrosion-resistant steel having a base metal thickness of 0.016”

 – **Alternative Ignition Barrier Assemblies by Special Approval Testing**
What is an Ignition Barrier?

- Special Approval Tests for Alternative Ignition Barrier Assemblies [IBC 2603.9 / IRC R316.6]

 - Same four large-scale corner burn tests as thermal barrier
 - NPFA 286, UL1715, FM4880 or UL1040

 - Special end-use fire tests per AC-377
 - Equivalent performance to ¼” plywood
 - AC-377 Appendix X Test for SPF in crawlspaces and under roof decks in unvented attics since June 2009
 - ASTM E970 Radiant Heat Flux Test for SPF on attic floors since June 2011
Ignition Barrier Performance

PASS IB_pass.wmv
with intumescent coating

FAIL IB_fail.wmv
without intumescent coating

AC-377 Appendix X (modified NFPA286 Room Corner) Test for Ignition Barriers
Ignition Barrier Performance

PASS IB_pass.wmv
with intumescent coating

FAIL IB_fail.wmv
without intumescent coating

AC-377 Appendix X (modified NFPA286 Room Corner) Test for Ignition Barriers

Even if building codes are not applicable in your jurisdiction or for a specific project, (e.g., retrofit insulation), always use the ignition barrier system recommended by the foam manufacturer.
Fire Testing: Commercial Buildings

• Additional requirements for SPF in Type I-IV Construction
 [IBC 2603.5]
 – Labelling of product
 – Thermal barrier required
 – Class A per ASTM E84 (<25 FS, <450 SD)
 – NFPA 259 test data corresponding to SPF tested per NFPA 285
 – NFPA 286 test data showing no sustained flaming
 – NFPA 285 test data for each wall assembly
 – ASTM E119 or UL 263 required for fire-resistance rated wall assemblies
Inspection and Verification

• Alternative Fire Assembly Test Results
 • Test performed by accredited 3rd-party lab
 • Sometimes difficult to interpret

• Evaluation Report
 • Test performed by accredited 3rd-party lab
 • Test results independently evaluated
 • Report defines installation
 • Product identification
 • Maximum thickness for foam
 • Alternative ignition barrier assemblies (if any)
Inspection and Verification

• Evaluation Service Reports
 • Majority of SPF insulation products have current ESRs
 • Available from manufacturer or ICC-ES websites
 • Eliminates need for contractors and inspectors to interpret test data
 • Defines product-specific requirements for thermal and ignition barriers based on fire testing
 • A sample ESR:

©2011 Spray Polyurethane Foam Alliance
Application Examples

Unvented Attic and Crawlspace

- SPF insulation under roof deck separated from attic space with approved ignition barrier prescriptive or per AC-377 Appendix X
- Limited access attic separated from interior space with approved 15-minute thermal barrier
- SPF insulation in walls separated from interior space with approved 15-minute thermal barrier
- Limited access crawlspace separated from interior space with approved 15-minute thermal barrier
- SPF insulation on walls separated from crawl space with approved ignition barrier

©2011 Spray Polyurethane Foam Alliance
Application Examples

Unvented Attic and Crawlspace – w/ Storage

- SPF insulation under roof deck separated from attic space with approved 15-minute thermal barrier
- approved 15-minute thermal barrier not required (e.g., ceiling tile)
- SPF insulation in walls separated from interior space with approved 15-minute thermal barrier
- SPF insulation on walls separated from crawlspace with approved 15-minute thermal barrier

©2011 Spray Polyurethane Foam Alliance
Application Examples

Vented Attic and Unvented Crawlspace

- SPF insulation on attic floor separated from attic space with approved ignition barrier prescriptive or per ASTM E970

- Limited access attic separated from interior space with approved 15-minute thermal barrier

- SPF insulation in walls separated from interior space with approved 15-minute thermal barrier

- Limited access crawlspace separated from interior space with approved 15-minute thermal barrier

- SPF insulation on walls separated from crawl space with approved ignition barrier

©2011 Spray Polyurethane Foam Alliance
Application Examples

Finished Room Over Garage

No ignition or thermal barrier needed if space is inaccessible (a.k.a. concealed)

All SPF insulation separated from interior space with approved 15-minute thermal barrier

½" gypsum board walls and ceilings

interior space
Application Examples

Space Under Low-Slope Roof: Tile Ceiling

- **dead** air space
- suspended tile ceiling
- interior space
- ½" gypsum board walls

SPF insulation under roof deck separated from air space with **approved 15-minute thermal barrier**

* If air space is used as an air return plenum, SPF must be covered with a 25 FSI / 50 SDI layer in addition to thermal barrier

SPF insulation in walls and ceiling separated from interior space with **approved 15-minute thermal barrier**
Application Examples

Space Under Low-Slope Roof: Gyp Board Ceiling

dead* air space

½" gypsum board ceiling

interior space

½" gypsum board walls

SPF insulation under roof deck separated from dead air space with approved ignition barrier

* If air space is used as an air return plenum, SPF must be covered with a 25 FSI / 50 SDI layer in place of ignition barrier

SPF insulation in walls and ceiling separated from interior space with approved 15-minute thermal barrier

©2011 Spray Polyurethane Foam Alliance
Final Comments

- Thermal Barriers and SPF
 - All SPF requires thermal barrier between foam and all interior spaces
 - If uncovered foam passes 15-minute thermal barrier test, or meets acceptance criteria of corner tests, no thermal barrier covering or coating is needed
Final Comments

• Ignition Barriers and SPF
 • Most closed-cell foams do not require additional ignition barrier coverings or coatings in limited access attics and crawlspaces
 • Most open-cell foams require additional ignition barrier coverings or coatings in limited access attics and crawlspaces
 • **Always consult evaluation report or third-party fire test reports to confirm ignition barrier requirements for each SPF product.**
 • **Always confirm requirements with local code official**
Summary

• Why Do Codes Require Thermal or Ignition Barriers?
• Fire Testing Methods
• What is a Thermal Barrier?
• What is an Ignition Barrier?
• Inspection and Verification
• Application Examples per Model Building Code
Key References

1. SPFA AY-126 - “Ignition and Thermal Barriers for the Spray Polyurethane Foam Industry” ©2011 SPFA

Thank You!

Questions?

SPFA Website: www.sprayfoam.org