Standard Amendment #2016-03

Title: MINHERS-2013 Chapters 1, 2, 3, 7, 8, 9 and 10 and Appendices A and B Addendum 20-2018, Adoption of ANSI/RESNET/ICC 380-2016 Standard for Testing Airtightness of Building Enclosures, Airtightness of Heating and Cooling Air Distribution Systems, and Airflow of Mechanical Ventilation Systems

Date Approved: November 23, 2016 (by SMB)
Date Effective: January 1, 2018
Standards Committee: Standard Development Committee 300 (SDC 300), Technical Standards

Justification:

RESNET has developed American National Standard ANSI/RESNET/ICC 380-2016 for testing the airtightness of building enclosures, airtightness of duct systems and the airflow of ventilation systems and has refined the Standard in Addendum A-2017. The Mortgage Industry National Home Energy Rating Standards must be updated to reference the ANSI standard and eliminate overlapping requirements.
Chapter 2- RESNET National Standard for Training and Certification

205 Certification Candidates

205.2 Certification

205.2.2 Rating Field Inspector (RFI)

205.2.2.2 Complete at least five probationary Rating Field Inspections observed by a certified HERS rater or a quality assurance designee. The certified HERS Rater or QAD shall use the RESNET JobWerks RFI Tool to document the results of probationary inspections. The probationary Rating Field Inspections shall comprise at a minimum the following tasks.

205.2.2.2.1 Use pressure differential diagnostics to identify intermediate buffer zones including (but not limited to) attics, garages, or crawlspaces.

205.2.2.2.2 Identify insulation defects and account for them in energy analysis tool inputs.

205.2.2.2.3 Identify insulation types, thickness, and alignment with air barriers.

205.2.2.2.4 Measure pressure differences across the building envelope imposed by the operation of the home's equipment.

205.2.2.2.5 Perform envelope leakage testing in accordance with the airtightness testing protocols contained in ANSI/RESNET/ICC 380-2016 Chapter 8.

205.2.2.2.6 Perform duct leakage testing in accordance with the duct testing protocols contained in ANSI/RESNET/ICC 380-2016 Chapter 8 and interpret results.

205.2.2.2.7 Identify room and zone pressure imbalances caused by lack of ducted return air or pressure relief mechanisms such as transfer grilles or jumper ducts.

205.2.2.2.8 Perform CAZ, spillage, and CO testing in accordance with Carbon Monoxide (CO) Test and Depressurization Test for the Combustion Appliance Zone (CAZ) protocols contained in ANSI/ACCA 12 QH, Appendix A, Sections A4 and A5.

205.2.2.2.9 The effective date for item 205.2.2.8 is Jan 1, 2014. Rating Field Inspectors who were certified prior to Jan 1, 2014 shall pass the RESNET Combustion Appliance Test, and The Work Scope Development Tests before January 1, 2015.

205.2.3 Home Energy Rater (HERS Rater)
205.2.3.2 Demonstrate competency at certain tasks mentored by a Certified Trainer by completing two training ratings. These ratings shall not contain any errors identified by RESNET approved rating software. Both ratings shall have a reasonably acceptable level of accuracy when compared to the trainer’s independent ratings of the same houses or building plans. The Trainer may choose these tasks to be performed in a hands-on environment, from house plans, or through RESNET approved computer simulations. However at least one of the two training ratings shall be a confirmed rating conducted in-person with a certified trainer on a real house. The candidate shall perform the following procedures during the confirmed training rating.

205.2.3.2.1 Use pressure differential diagnostics to identify intermediate buffer zones including (but not limited to) attics, garages, or crawlspaces.

205.2.3.2.2 Identify insulation defects and account for them in energy analysis tool inputs.

205.2.3.2.3 Identify insulation types, thickness, and alignment with air barriers.

205.2.3.2.4 Measure pressure differences across the building envelope imposed by the operation of the home's equipment.

205.2.3.2.5 Perform building envelope leakage testing in accordance with the airtightness testing protocols contained in ANSI/RESNET/ICC 380-2016 Chapter 8.

205.2.3.2.6 Perform duct leakage testing in accordance with the duct testing protocols contained in ANSI/RESNET/ICC 380-2016 Chapter 8 and interpret results.

205.2.3.2.7 Identify room and zone pressure imbalances caused by lack of ducted return air or pressure relief mechanisms such as transfer grilles or jumper ducts.

205.2.3.2.8 Identify gas leaks using combustible gas sensing equipment. If a leak is found, recommend that a certified technician repair the leak.

205.2.3.2.9 Perform CAZ, spillage, and CO testing in accordance with Carbon Monoxide (CO) Test and Depressurization Test for the Combustion Appliance Zone (CAZ) protocols contained in ANSI/ACCA 12 QH, Appendix A, Sections A4 and A5.

205.2.3.2.10 Raters who were certified prior to January 1, 2014 shall pass the RESNET Combustion Appliance Test and The Work Scope Development Tests before January 1, 2015.

205.2.3.3 After passing the exam and completing the two training ratings, but prior to being certified, the candidate shall complete three probationary ratings with a Rating Provider. At least two of the three probationary ratings shall be confirmed ratings.

207 Capabilities
Certified individuals shall have certain capabilities to perform the work required under their certification. The categories listed in this section are contained in Chapter 3 - , Chapter 8 - , ANSI/RESNET/ICC 380-2016 and Appendix 1 - On-Site Inspection Procedures for Minimum Rated Features. Certification candidates shall demonstrate proficiency at these capabilities through successful completion of certification requirements specified in See Section 205 Certification Candidates. Training providers should ensure that their curricula effectively cover these items.

207.1 Home Energy Survey Professional (HESP)

Home Energy Surveys are primarily conducted on existing homes. HESPs do not perform any performance, diagnostic, or destructive testing. All capabilities listed here are limited to visually accessible items in the home unless otherwise noted.

207.1.5 Determining Conditioned Space Volume

207.1.5.1 Identify and determine the Conditioned Space Volume of a dwelling unit as defined in Appendix B, spaces as directly conditioned, indirectly conditioned, or unconditioned.

207.1.5.2 Define the home’s thermal boundary and make appropriate recommendations for changing the thermal boundary.

207.2 Rating Field Inspector (RFI)

A Rating Field Inspector is permitted to conduct all tasks contained within Appendix A - On-Site Inspection Procedures for Minimum Rated Features. A Certified Rating Field Inspector shall have proficiency at the capabilities of a HESP in addition to the following items.

207.2.1 General

207.2.1.1 Use field inspection forms to identify and document the minimum rated features of the Reference Home and Rated Home in accordance with the requirements of ANSI/RESNET/ICC 301-2014 – HERS Reference Home and Rated Home Configuration and Appendix A- On-Site Inspection Procedures for Minimum Rated Features – On-Site Inspection Procedures.

207.2.1.2 Identify potential problems with the building such as health and safety concerns, building durability issues, potential comfort problems, and possible elevated energy use.

207.2.1.3 Identify basic home construction types and the ramifications of these for energy usage.

207.2.2 Determining Conditioned Space Volume

207.2.2.1 Use pressure differential diagnostics to identify intermediate buffer zones including (but not limited to) attics, garages, or crawlspaces.
207.2.2 Determine the conditioned space Volume of a dwelling unit as defined in Appendix B of On-Site Inspection Procedures for Minimum Rated Features.

207.2.9 Framed Floors

207.2.9.1 Determine if framed floors are exposed to conditioned space Volume, unconditioned space Volume, interstitial, or outdoors.

207.2.9.2 Determine floor system type and frequency of framing members.

207.2.9.3 Determine insulation thickness, type, and grade (I, II, or III).

207.2.10 Slab-on-Grade

207.2.10.1 Identify slab as covered or exposed.

207.2.11 Above Grade Walls

207.2.11.1 Determine if walls are exposed to conditioned space Volume, unconditioned space Volume, or outdoors.

207.2.11.2 Determine construction type, thickness, and exterior color.

207.2.16 Air Leakage

207.2.16.1 Identify air leakage mechanisms and drivers, energy and comfort implications, and health and safety issues.

207.2.16.2 Perform single-point and multi-point building envelope leakage testing in accordance with the airtightness testing protocols contained in ANSI/RESNET/ICC 380–2016 Chapter 8.

207.2.16.3 Identify potential air sealing using zonal pressure differentials and measurement techniques.

207.2.16.4 Measure pressure differences across the building envelope imposed by the operation of the home's equipment.

207.2.17 Conditioned Air Distribution Systems

207.2.17.1 Identify impacts of designed and imposed flaws (closed interior doors, blocked registers and grilles, air handler filters).

207.2.17.2 Identify duct supply and return types (flexible, rigid metal, building chase, insulated panels) and locations with respect to thermal and air barriers.
207.2.17.3 Identify room and zone pressure imbalances caused by lack of ducted return air or pressure relief mechanisms such as transfer grilles or jumper ducts.

207.2.17.4 Perform duct leakage testing in accordance with the duct testing protocols contained in ANSI/RESNET/ICC 380-2016 Chapter 8— and recommend sealing as needed based on test results.

207.2.17.5 Determine need for duct insulation in unconditioned spaces Unconditioned Space Volumes and specify thickness of retrofit insulation if needed.

207.3 Home Energy Rating System Rater (HERS Rater)

A Certified Home Energy Rater shall have proficiency at the knowledge and abilities of a HESP and a Rating Field Inspector in addition to the following.

207.3.2 RESNET Rating System

207.3.2.1 Communicate the business aspects of being a RESNET HERS Rater.

207.3.2.2 Maintain current knowledge of the HERS Rating method using the Reference Home as defined in ANSI/RESNET/ICC 301-2014.

207.3.2.3 Conduct both projected and confirmed building simulation and performance analysis to provide HERS Ratings in accordance with the requirements in Chapter 3— and Chapter 8— ANSI/RESNET/ICC 380-2016.

Chapter 3- NATIONAL HOME ENERGY RATING TECHNICAL STANDARDS

302 Definitions

The following terms have specific meanings as used in this Standard. In the event that definitions given here differ from definitions given elsewhere, including those given in ANSI/RESNET/ICC 301-2014, the definitions given here shall govern.

303 Technical Requirements

303.1 Applicable Standards

703 National Home Energy Audit Procedures

703.2 HERS Rating on an Existing Home

The purpose of the HERS Rating on an existing home is to identify building performance deficiencies and provide a work scope sufficient for improvements to be made to the audited home. The HERS Rating Performance Audit includes an evaluation, performance testing, computer software analysis using software that is accredited by RESNET for this purpose, and reporting of proposed treatments for improvement of an existing home. The evaluation shall include a review of the data collected from any previous energy audit or survey, any further required measurement and performance testing, and combustion appliance testing. The Rater shall determine the appropriate work scope for the home. A homeowner may elect to go through this process with or without a prior Professional Home Energy Survey. A HERS Rating on existing home includes all of the provisions of the Professional Home Energy Survey (Section 703.1.2.5), plus the performance of diagnostic testing and reporting requirements as follows:

703.2.1 Evaluate building shell air leakage in CFM$_{50}$

At a minimum, a single point (50 Pa) blower door depressurization test shall be performed in accordance with the envelope testing protocols contained in ANSI/RESNET/ICC 380-2016 Chapter 8 of these Standards and the results there of shall be included in the audit report.

703.2.2 Evaluate duct leakage.

703.2.2.1 The Auditor shall perform a duct leakage test in accordance with the protocols contained in ANSI/RESNET/ICC 380-2016 Chapter 8 of these Standards, and/or specify a duct leakage test in accordance with RESNET standards prior to beginning any duct-sealing work.

Chapter 8- RESNET Standards

801 General Provisions

801.1 Purpose

This Standard will present a step-by-step approach for how to measure: enclosure air leakage for the inspection of low rise, three stories or less, residential and light commercial buildings, and duct leakage associated with HVAC systems air flows for ventilation systems, and procedures for work scope development and combustion safety testing.

801.2 Scope

The purpose of this document sets out the procedures for performance testing and work scope development and combustion safety testing by which home energy ratings shall be conducted so their results will be acceptable to all public and private sector industries that may require an objective, cost-effective, sustainable home energy rating process.
802 Procedures for Building Enclosure Airtightness

The purpose of this test procedure is to determine the airtightness of a building enclosure measured in cubic feet per minute at a 50 Pa pressure difference (CFM 50).

802.1 On-Site Inspection Protocol

There are three acceptable airtightness test procedures:

802.1.1 Single point test: Measuring air leakage one time at a single pressure difference as described in Section 802.5

802.1.2 Multi-point test: Measuring air leakage at multiple induced pressures differences as described in Section 802.6

802.1.3 Repeated single point test: The test is similar to the single point test, but the test is done multiple times for improved accuracy and estimating uncertainty as described in Section 802.7

The building may be tested by applying a positive or negative pressure. Follow all manufacturers’ instructions for set-up and operation of all equipment. If certain requirements of this standard cannot be met, then all deviations from the standard shall be recorded and reported.

Note: Use caution when deciding how and whether to test homes with potential airborne contaminants (e.g. fireplace ash, mold or asbestos) and refer to local, state and national protocols/standards for methods to deal with these and other contaminants.

802.2 Protocol for Preparing the Building Enclosure for Testing

802.2.1 Doors and windows that are part of the conditioned space boundary shall be closed and latched.

802.2.2 Attached garages: All exterior garage doors and windows shall be closed and latched unless the blower door is installed between the house and the garage, in which case the garage shall be opened to outside by opening at least one exterior garage door.

802.2.3 Crawlspace: If a crawlspace is inside the conditioned space boundary, interior access doors and hatches between the house and the crawlspace shall be opened and exterior crawlspace access doors, vents and hatches shall be closed. If a crawlspace is outside the conditioned space boundary, interior access doors and hatches shall be closed. For compliance testing purposes, crawlspace vents shall be open.

802.2.4 Attic: If an attic is inside the conditioned space boundary, interior access doors and hatches between the house and the conditioned attic shall be opened, and attic exterior access...
doors and windows shall be closed. If an attic is outside the conditioned space boundary, interior access doors and hatches shall be closed and exterior access doors, dampers or vents shall be left in their as found position and their position during testing shall be recorded on the test report.

802.2.5 Interior Doors: Shall be open within the Conditioned Space Boundary. See the definition of “Conditioned Space Boundary” for clarification.

802.2.6 Chimney dampers and combustion air inlets on solid fuel appliances: Dampers shall be closed. Take precautions to prevent ashes or soot from entering the house during testing. Although the general intent of this standard is to test the building in its normal operating condition, it may be necessary to temporarily seal openings to avoid drawing soot or ashes into the house. Any temporary sealing shall be noted in the test report.

802.2.7 Combustion appliance flue gas vents: Shall be left in their normal appliance-off condition.

802.2.8 Fans: Any fan or appliance capable of inducing airflow across the building enclosure shall be turned off including, but not limited to, clothes dryers, attic fans, kitchen and bathroom exhaust fans, outdoor air ventilation fans, air handlers, and crawl-space and attic ventilation fans. Continuously operating ventilation systems shall be turned off and the air openings sealed, preferably at the exterior terminations.

802.2.9 Non-motorized dampers which connect the conditioned space to the exterior or to unconditioned spaces: Dampers shall be left as found. If the damper will be forced open or closed by the induced test pressure, that fact shall be reported in the test report. Clothes dryer exhaust openings should not be sealed off even if there is no dryer attached but this fact should be noted in the test report.

802.2.10 Motorized dampers which connect the conditioned space to the exterior (or to unconditioned spaces): The damper shall be placed in its closed position and shall not be further sealed.

802.2.11 Undampered or fixed-damper intentional openings between conditioned space and the exterior or unconditioned spaces: Shall be left open or fixed position, however, temporary blocking shall be removed. For example: fixed damper ducts supplying outdoor air for intermittent ventilation systems (including central fan-integrated distribution systems) shall be left in their fixed damper position. Exception: Undampered supply air or exhaust air openings of continuously operating mechanical ventilation systems shall be sealed (preferably seal at the exterior of enclosure) and ventilation fans shall be turned off as specified above.

802.2.12 Whole building fan louvers/shutters: Shall be closed. If there is a seasonal cover, install it.

802.2.13 Evaporative coolers: The opening to the exterior shall be placed in its off condition. If there is a seasonal cover, install it.
802.2.14 Operable window trickle-vents and through-the-wall vents: Shall be closed.

802.2.15 Supply registers and return grilles: Shall be left open and uncovered.

802.2.16 Plumbing drains with p-traps: Shall be sealed or filled with water, if empty.

802.2.17 Combustion appliances: Shall remain off during the test.

Maintain the above conditions throughout the test. If during the test, induced pressures affect operable dampers, seasonal covers, etc., then reestablish the set-up and consider reversing direction of fan flow.

After testing is complete, return the building to its as found conditions prior to the test. For example, make sure that any combustion appliance pilots that were on prior to testing remain lit after testing.

802.3 Accuracy Levels for Enclosure Leakage Testing

This standard defines two levels of accuracy:

802.3.1 Standard level of accuracy: level of accuracy that produces test results that can be used in the modeling software or to assess compliance with a performance standard, energy code, or specific program requirement. This is the level of accuracy that is normally attained unless there are adverse testing conditions such as high winds, an extremely leaky building or very large baseline pressure adjustments.

802.3.2 Reduced level of accuracy: during adverse testing conditions or in certain applications where testing time and costs are a factor, a test with a reduced level of accuracy may be used. Such applications may include demonstrating compliance with a performance standard, energy code, or specific program requirement. However, measurements made with a reduced level of accuracy may require surpassing the threshold value by an amount which will account for the added uncertainty as defined in the sections below. RESNET accredited software that uses test results with a reduced level of accuracy shall internally adjust the calculations in accordance with this chapter.

802.4 Installation of the Blower Door Airtightness Testing System

802.4.1 Install the blower door system in an exterior doorway or window that has unrestricted access to the building and no obstructions to airflow within five feet of the fan inlet and two feet of the fan outlet. Avoid installing the system in a doorway or window exposed to the wind.

802.4.2 It is permissible to use a doorway or window between the conditioned space and unconditioned space as long as the unconditioned space has an unrestricted air pathway to the outdoors. For example, an attached garage or porch can be used as the unconditioned space; in that case, be sure to open all exterior windows and doors of the unconditioned space to the outdoors.
802.4.3 Install the pressure gauge(s), fans and tubing connections according to equipment manufacturer’s instructions.

802.4.4 Record the indoor and outdoor temperatures in degrees F to an accuracy of 10 degrees F.

802.4.5 Record the elevation of the building site with an accuracy of 2000 feet; this may be omitted at elevations less than 5000 feet above sea level.

802.4.6 If ACH₅₀, i.e., air changes per hour @ 50 Pa, will be calculated, record the building volume (the volume enclosed by the conditioned space boundary).

802.5 Procedure for Conducting a One-Point Airtightness Test (if a multi-point test will be conducted, skip to Section 802.6)

802.5.1 Choose and record a time averaging period of at least 10 seconds to be used for measuring pressures. With the blower door fan sealed and off, measure and record 5, independent, average baseline building pressure readings with respect to outside to a resolution of 0.1 Pa.

802.5.2 Subtract the smallest baseline measurement from the largest recorded in Step 802.5.1 and record this as the baseline range.

802.5.3 Airtightness tests with a baseline range less than 5.0 Pa, will be considered a Standard Level of Accuracy Test. Airtightness tests with a baseline range between 5.0 Pa and 10.0 Pa will be considered a Reduced Level of Accuracy Test and the results will be adjusted using Section 802.8. A one point test cannot be performed under this standard if the baseline range is greater than 10.0 Pa. Record the level of accuracy for the test as standard or reduced, as appropriate. The baseline test may be repeated employing a longer time averaging period in order to meet the desired level of accuracy.

802.5.4 Re-measure the baseline building pressure using the same time averaging period recorded in Step 802.5.1 or use the average of the baseline pressures measured in step 802.5.1. This measurement is defined as the Pre-Test Baseline Building Pressure. If desired for greater accuracy, a longer time averaging period may be used. Record the Pre-Test Baseline Building Pressure.

802.5.5 Unseal the blower door fan. Turn on and adjust the fan to create an induced building pressure of approximately 50 Pa. Induced building pressure shall be defined as the (unadjusted) building pressure minus the pre-test baseline building pressure. If a 50 Pa induced building pressure cannot be achieved because the blower door fan does not have sufficient flow capacity, then achieve the highest induced building pressure possible with the equipment available.

802.5.6 A one-point test may only be performed if the maximum induced building pressure is at least 15 Pa and greater than four times the baseline pressure. If the maximum induced...
building pressure is less than 15 Pa, recheck that the house setup is correct and determine if any basic repairs are needed prior to further testing or modeling of the building. A multi-point test may be attempted, or multiple fans may be used. If using multiple fans, follow the manufacturer’s instruction for measurement procedures.

802.5.7 Measure and record the unadjusted building pressure and nominal (not temperature and altitude corrected) fan flow using the same averaging period used in Step 802.5.4. Record the unadjusted building pressure (with 0.1 Pa resolution), nominal fan flow (with 1 CFM resolution), fan configuration (rings, pressurization or depressurization, etc), fan and manometer models and serial numbers.

802.5.8 Turn off the fan.

802.5.9 If your pressure gauge has the capability to display the induced building pressure (i.e. “baseline adjustment” feature) and adjust the fan flow value to an induced building pressure of 50 Pa (i.e. “@50 Pa” feature), then follow the manometer manufacturer’s procedures for calculating the results of a one-point test and record the following values: induced building pressure, nominal CFM_{50}, fan configuration, fan and manometer models and serial numbers. If needed calculate the following values: induced building pressure = measured building pressure minus the Pre-Test Baseline Building Pressure

Note: If a “baseline adjustment” feature of the manometer was used, then the induced building pressure is displayed on the pressure gauge.

nominal CFM_{50} = \frac{50}{\text{induced building pressure}}^{0.65} x \text{recorded fan flow}

Note: If both a “baseline adjustment” feature and an “@50 Pa” feature were used, the nominal CFM_{50} is displayed directly on the pressure gauge.

If the altitude is above 5,000 feet or the difference between the inside and outside temperature is more than 30 degrees Fahrenheit then calculate the corrected CFM_{50} as defined below:

corrected CFM_{50} = \text{nominal CFM}_{50} \times \text{altitude correction factor} \times \text{temperature correction factor}

where:

altitude correction factor = 1 + .000006 \times \text{altitude}, altitude is in feet

temperature correction factors are listed in Table 802.1

802.6 Procedure for Conducting a Multi-Point Airtightness Test

802.6.1 Equipment that can automatically perform a multi-point test may be used to perform the steps below.

802.6.2 With the blower door fan sealed and off, measure and record the pre-test baseline building pressure reading with respect to outside. This measurement shall be taken over a
time-averaging period of at least 10 seconds and shall have a resolution of 0.1 Pa. Record the pre-test baseline building pressure measurement.

802.6.3 Unseal the blower door fan. Turn on and adjust the fan to create an induced building pressure of approximately 60 Pa. If a 60 Pa induced building pressure cannot be achieved because the blower door fan does not have sufficient flow capacity, then adjust the fan to achieve the highest induced building pressure possible.

802.6.4 Measure the unadjusted building pressure (not baseline adjusted) and nominal fan flow (neither temperature nor altitude corrected) using the same time-averaging period used in Step 802.6.2. Record the unadjusted building pressure (with 0.1 Pa resolution), nominal fan flow (with 1 CFM resolution), fan configuration, fan model and fan serial number. Assure that the fan is being operated according to the manufacturer’s instructions.

Note: since both pre- and post-test baseline measurements are required, do not use any baseline adjustment feature of the manometer. In addition, do not use an “@50 Pa” feature because the nominal fan flow shall be recorded.

802.6.5 Take and record a minimum of 7 additional unadjusted building pressure and nominal fan flow measurements at target induced pressures which are approximately equally-spaced between 60 Pa (or the highest achievable induced building pressure) and 15 Pa. In very leaky buildings, the low end of this range may be reduced to as little as 4 Pa plus the absolute value of the baseline pressure.

802.6.6 Turn off and seal the blower door fan.

802.6.7 Measure and record the post-test baseline building pressure reading with respect to outside. This measurement shall be taken over the same time-averaging period used in Step 802.6.2 and shall have a resolution of 0.1 Pa. Record the post-test baseline building pressure measurement.

802.6.8 Enter the recorded test values, temperatures and altitude into software that can perform the necessary calculations in accordance with ASTM E779-10, Section 9. The software program shall calculate and report: corrected CFM$_{50}$ and the percent uncertainty in the corrected CFM$_{50}$ at the 95% confidence level, as defined in ASTM E779-10, Section 9. Although ACH$_{50}$ may be reported, this calculation may be omitted if the ACH$_{50}$ metric is not needed.

Note: To avoid a higher percent uncertainty than desired, the testing technician may choose a larger, time-averaging period and start over at Step 802.6.2.

802.6.9 If the reported uncertainty in the corrected CFM$_{50}$ is less than or equal to 10.0%, then the airtightness test shall be classified as a Standard Level of Accuracy test. If the reported uncertainty in the corrected CFM$_{50}$ is greater than 10.0%, the airtightness test shall be classified as a Reduced Level of Accuracy test and the results will be adjusted using Section 802.8.
802.7 Procedure for Conducting a Repeated Single Point Test

802.7.1 With the blower door fan sealed and off, measure and record the pre-test baseline building pressure reading with respect to outside. This measurement shall be taken over a time-averaging period of at least 10 seconds and shall have a resolution of 0.1 Pa. Record this value as the pre-test baseline building pressure measurement.

802.7.2 Unseal the blower door fan. Turn on and adjust the fan to create an induced building pressure of approximately 50 Pa. If a 50 Pa induced building pressure can not be achieved because the blower door fan does not have sufficient flow capacity, then achieve the highest induced building pressure possible with the equipment available.

802.7.3 If during any single repeat of this test, the induced building pressure is less than 15 Pa, recheck that the house set up is correct and determine if any basic repairs are needed prior to further testing or modeling of the building. Following any repairs or changes to the set up, the test shall be restarted from the beginning. If you can not reach at least 15 Pa every time, then use the procedures in sections 802.5 or 802.6.

802.7.4 Measure and record the unadjusted building pressure and nominal (not temperature and altitude corrected) fan flow using the same time-averaging period used in Step 802.6.2. Record the unadjusted building pressure (with 0.1 Pa resolution), nominal fan flow (with 1 CFM resolution), fan configuration (rings, pressurization or depressurization, etc), fan model and fan serial number.

Note: If your pressure gauge has the capability to display the induced building pressure (i.e. baseline adjustment feature) and the capability to adjust the fan flow value to an induced building pressure of 50 Pa (i.e. "@50 Pa" feature), then follow the manufacturer’s procedures for calculating the results of a one point test and record the following values: induced building pressure, nominal CFM_{50}, fan configuration, fan model and fan serial number.

802.7.5 Turn off the fan.

802.7.6 Calculate the following values: induced building pressure = unadjusted building pressure (Pa) minus pre-test baseline building pressure (Pa).

Note: If a baseline adjustment feature was used, then the induced building pressure is displayed on the pressure gauge.

nominal CFM_{50}=(50 \text{ Pa} / \text{Induced building pressure})^{0.65} \times \text{nominal fan flow}.

Note: If both a baseline adjustment feature and an "@50 Pa" feature were used, the nominal CFM_{50} is displayed directly on the pressure gauge.

802.7.7 Repeat Steps 802.7.1 through 802.7.6 until a minimum of 5 nominal CFM_{50} estimates have been recorded. The same fan configuration shall be used for each repeat.
802.7.8 Calculate the Average Nominal CFM by summing the individual nominal CFM readings and dividing by the number of readings.

802.7.9 If the altitude is above 5,000 feet or the difference between the inside and outside temperature is more than 30 degrees Fahrenheit then calculate the corrected CFM as defined below:

\[
\text{Calculate the Average Corrected CFM} = \text{Average Nominal CFM} \times \text{altitude correction factor} \times \text{temperature correction factor}
\]

where:

- altitude correction factor = 1 + .000006 \times \text{altitude}, altitude is in feet
- temperature correction factors are listed in Table 802.1

Table 802.1 Temperature Correction Factors for Pressurization and Depressurization Testing - Calculated according to ASTM E779-10.

<table>
<thead>
<tr>
<th>OUTSIDE TEMP (°F)</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.012</td>
<td>1.021</td>
<td>1.029</td>
<td>1.038</td>
<td>1.047</td>
<td>1.056</td>
<td>1.064</td>
</tr>
<tr>
<td>55</td>
<td>0.997</td>
<td>1.005</td>
<td>1.014</td>
<td>1.023</td>
<td>1.034</td>
<td>1.040</td>
<td>1.048</td>
</tr>
<tr>
<td>60</td>
<td>0.992</td>
<td>1.000</td>
<td>1.009</td>
<td>1.017</td>
<td>1.026</td>
<td>1.035</td>
<td>1.043</td>
</tr>
<tr>
<td>65</td>
<td>0.987</td>
<td>0.995</td>
<td>1.004</td>
<td>1.012</td>
<td>1.021</td>
<td>1.029</td>
<td>1.038</td>
</tr>
<tr>
<td>70</td>
<td>0.982</td>
<td>0.990</td>
<td>0.999</td>
<td>1.008</td>
<td>1.016</td>
<td>1.024</td>
<td>1.033</td>
</tr>
</tbody>
</table>

- INSIDE TEMPERATURE (°F)
Correction Factors for Depressurization Testing

<table>
<thead>
<tr>
<th>INSIDE TEMPERATURE (F)</th>
<th>OUTSIDE TEMP (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td>0.865</td>
</tr>
<tr>
<td>-15</td>
<td>0.874</td>
</tr>
<tr>
<td>-10</td>
<td>0.883</td>
</tr>
<tr>
<td>-5</td>
<td>0.892</td>
</tr>
<tr>
<td>0</td>
<td>0.900</td>
</tr>
<tr>
<td>5</td>
<td>0.909</td>
</tr>
<tr>
<td>10</td>
<td>0.918</td>
</tr>
<tr>
<td>15</td>
<td>0.927</td>
</tr>
<tr>
<td>20</td>
<td>0.935</td>
</tr>
<tr>
<td></td>
<td>0.944</td>
</tr>
<tr>
<td></td>
<td>0.952</td>
</tr>
<tr>
<td></td>
<td>0.961</td>
</tr>
<tr>
<td></td>
<td>0.970</td>
</tr>
<tr>
<td></td>
<td>0.978</td>
</tr>
<tr>
<td></td>
<td>0.987</td>
</tr>
<tr>
<td></td>
<td>0.995</td>
</tr>
<tr>
<td>-120</td>
<td>0.861</td>
</tr>
<tr>
<td>-115</td>
<td>0.870</td>
</tr>
<tr>
<td>-110</td>
<td>0.879</td>
</tr>
<tr>
<td>-105</td>
<td>0.887</td>
</tr>
<tr>
<td>-100</td>
<td>0.896</td>
</tr>
<tr>
<td>-95</td>
<td>0.905</td>
</tr>
<tr>
<td>-90</td>
<td>0.913</td>
</tr>
<tr>
<td>-85</td>
<td>0.922</td>
</tr>
<tr>
<td>-80</td>
<td>0.931</td>
</tr>
<tr>
<td>-75</td>
<td>0.940</td>
</tr>
<tr>
<td>-70</td>
<td>0.948</td>
</tr>
<tr>
<td>-65</td>
<td>0.956</td>
</tr>
<tr>
<td>-60</td>
<td>0.965</td>
</tr>
<tr>
<td>-55</td>
<td>0.974</td>
</tr>
<tr>
<td>-50</td>
<td>0.986</td>
</tr>
<tr>
<td>-45</td>
<td>0.990</td>
</tr>
<tr>
<td>-40</td>
<td>0.994</td>
</tr>
<tr>
<td>-35</td>
<td>0.998</td>
</tr>
<tr>
<td>-30</td>
<td>1.003</td>
</tr>
<tr>
<td>-25</td>
<td>1.007</td>
</tr>
<tr>
<td>-20</td>
<td>1.011</td>
</tr>
<tr>
<td>-15</td>
<td>1.016</td>
</tr>
<tr>
<td>-10</td>
<td>1.020</td>
</tr>
<tr>
<td>-5</td>
<td>1.025</td>
</tr>
<tr>
<td>0</td>
<td>1.030</td>
</tr>
<tr>
<td>5</td>
<td>1.035</td>
</tr>
<tr>
<td>10</td>
<td>1.040</td>
</tr>
<tr>
<td>15</td>
<td>1.045</td>
</tr>
<tr>
<td>20</td>
<td>1.050</td>
</tr>
<tr>
<td>25</td>
<td>1.055</td>
</tr>
<tr>
<td>30</td>
<td>1.060</td>
</tr>
<tr>
<td>35</td>
<td>1.065</td>
</tr>
<tr>
<td>40</td>
<td>1.070</td>
</tr>
<tr>
<td>45</td>
<td>1.075</td>
</tr>
<tr>
<td>50</td>
<td>1.080</td>
</tr>
<tr>
<td>55</td>
<td>1.085</td>
</tr>
<tr>
<td>60</td>
<td>1.090</td>
</tr>
<tr>
<td>65</td>
<td>1.095</td>
</tr>
<tr>
<td>70</td>
<td>1.100</td>
</tr>
<tr>
<td>75</td>
<td>1.105</td>
</tr>
<tr>
<td>80</td>
<td>1.110</td>
</tr>
<tr>
<td>85</td>
<td>1.115</td>
</tr>
<tr>
<td>90</td>
<td>1.120</td>
</tr>
<tr>
<td>95</td>
<td>1.125</td>
</tr>
<tr>
<td>100</td>
<td>1.130</td>
</tr>
<tr>
<td>105</td>
<td>1.135</td>
</tr>
<tr>
<td>110</td>
<td>1.140</td>
</tr>
<tr>
<td>115</td>
<td>1.145</td>
</tr>
<tr>
<td>120</td>
<td>1.150</td>
</tr>
</tbody>
</table>
802.7.10 Estimate the precision uncertainty using one of the two following methods

802.7.10.1 Standard Statistical Process—Use a calculator or computer to compute the Standard Deviation of the repeated Nominal CFM$_{50}$ readings. Divide this Standard Deviation by the square root of the number of readings. Multiply the result by the t-statistic in Table 802.2 corresponding to the number of readings taken. Convert this result to a percentage of the Average Nominal CFM$_{50}$.

Table 802.2 Precision Uncertainty: Values of t-statistic

<table>
<thead>
<tr>
<th>Number-of-readings</th>
<th>t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.78</td>
</tr>
<tr>
<td>6</td>
<td>2.57</td>
</tr>
<tr>
<td>7</td>
<td>2.45</td>
</tr>
<tr>
<td>8</td>
<td>2.37</td>
</tr>
<tr>
<td>9</td>
<td>2.34</td>
</tr>
</tbody>
</table>

802.7.11 If a software program is used, it shall at a minimum calculate and report:

802.7.11.1 Average CFM$_{50}$—corrected for altitude and temperature
802.7.11.2 The percent uncertainty in the CFM₅₀, at the 95% confidence level, as calculated in 802.7.10.

802.7.11.3 ACH₅₀ (air changes per hour @ 50 Pa) = (CFM₅₀ x 60) / building volume (in cubic-feet). This calculation may be omitted if the ACH₅₀-metric is not needed.

802.7.12 If the reported uncertainty in the CFM₅₀ is less than or equal to 10.0%, then the airtightness test shall be classified as a Standard Level of Accuracy test as defined in section 802.3. If the reported uncertainty in the CFM₅₀ is greater than 10.0%, the airtightness test shall be classified as a Reduced Level of Accuracy test as defined in section 802.3.

802.8 Application of Results

802.8.1 Adjusting CFM₅₀ for Tests with a Reduced Level of Accuracy. When using results classified as having a Reduced Level of Accuracy, an adjustment shall be used in certain situations. The adjustment is done to improve the probability that the tested building meets the required performance threshold. The adjusted CFM₅₀ in these situations is defined as:

adjusted CFM₅₀ = extending factor x corrected CFM₅₀,

where:

For a One-point Test, classified as Reduced Level of Accuracy:

extending factor = 1 + 0.1 x (50 / the induced pressure)

For a Multi-point Test, classified as Reduced Level of Accuracy:

extending factor = 1 + (% uncertainty / 100)

adjusted CFM₅₀-value shall be used when:

determining whether or not a building meets an airtightness threshold, and

calculating an Energy Rating for the purpose of compliance with any standard, energy code or program.

adjusted CFM₅₀-value shall NOT be used when:

calculating the expected energy savings from retrofit,

calculating an energy audit, or

assessing the relative airtightness of a group of buildings.

802.8.2 Other Leakage Metrics:

ELA may be calculated by: ELA = 0.055 x CFM₅₀

Where ELA is in square inches

ACH₅₀ = corrected CFM₅₀ x 60 / building volume (in cubic-feet)

Specific Leakage Area may be calculated by:
SLA = 0.00694 x ELA/ building floor area (square feet)

Where ELA (Effective Leakage Area) referenced to 4 pa is in square inches

Normalized Leakage Area may be calculated by:

NLA = SLA x (S)^0.3, where S is the number of stories above grade

802.9 Equipment Accuracy and Requirements

Blower door fans used for building air leakage testing shall measure airflow (after making any necessary air density corrections) with an accuracy of +/- 5%. Pressure gauges shall measure pressure differences with a resolution of 0.1 Pa and have an accuracy of +/- 1% of reading or 0.5 Pa, whichever is greater.

Blower door and associated pressure testing instruments shall be tested annually for calibration by the HERS Rating Provider or Certified Rater. The provider shall use a standard for field testing of calibration provided by the equipment manufacturer. Magnehelic Gauges cannot be field tested and shall be recalibrated by the Blower Door manufacturer annually.

Field check the fan and flow measuring systems for defects and maintain them according to manufacturers recommendations. The HERS Rating Provider or Certified Rater shall maintain a written log of the annual calibration check to verify all equipment accuracy for a period of three (3) years. These records shall be made available within 3 business days to the RESNET Quality Assurance Administrator upon request.

803 On-Site Inspection Procedure for Duct Leakage Testing

The purpose of these test procedures is to make a determination of the amount of leakage of a duct system, either total system leakage or leakage to outside of the conditioned space. Because total duct leakage (to both inside and outside the conditioned space) at 25 Pascals should always be greater than the leakage to outside, the total leakage may be used instead of leakage to outside for determining that a system meets a required threshold. The total leakage value may be entered into software as if it were leakage to the outside for this purpose. However, total leakage should not be substituted for leakage to outside when conducting an energy audit or predicting savings from retrofits, except as indicated. Table 803.1 summarizes the test methods approved for use in the RESNET Standards.

803.1 Air Handler Flow

For the purposes of determining if a total duct leakage test method may be used (see Table 803.1), the Air handler flow can be measured in accordance with ASHRAE Standard152-2004, ASTM E1554-2007, or by using the following default values: 400 CFM per ton of air conditioner or heat pump capacity or 200 CFM per 12,000 Btu/h of furnace (output) capacity whichever is greater.

Table 803.1 Duct Leakage Test Methods
<table>
<thead>
<tr>
<th>Test Method</th>
<th>Test pressure</th>
<th>Conversion to operating pressure</th>
<th>Supply/Return</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leakage to the Outside Tests</td>
<td>25 Pa</td>
<td>No conversion</td>
<td>Assume ½ supply and ½ return</td>
<td>-</td>
</tr>
<tr>
<td>RESNET Standard Section 803.7</td>
<td>25 Pa</td>
<td>No conversion</td>
<td>Assume ½ supply and ½ return</td>
<td>-</td>
</tr>
<tr>
<td>ASHRAE 152 Annex B</td>
<td>25 Pa</td>
<td>½ plenum pressure for supply and return individually</td>
<td>Separate</td>
<td>-</td>
</tr>
<tr>
<td>ASTM E1554-07 Method A: “Delta Q”</td>
<td>Normal Operation</td>
<td>n/a</td>
<td>Separate</td>
<td>Can be used for energy auditing but not compliance testing. To limit precision errors this test is only allowed in this RESNET Standard if the Building Enclosure Leakage is less than 2500 cfm @ 50 Pa</td>
</tr>
<tr>
<td>ASTM E1554 Method B</td>
<td>25 Pa</td>
<td>½ plenum pressure for supply and return individually</td>
<td>Separate</td>
<td>-</td>
</tr>
<tr>
<td>Total Duct Leakage Tests</td>
<td>25 Pa</td>
<td>No conversion</td>
<td>Assume ½ supply and ½ return</td>
<td>-</td>
</tr>
</tbody>
</table>

The total leakage may be used instead of leakage to outside for compliance testing. It may be used for energy audits or savings estimates if the total leakage is less than 10% of air handler flow.
803.2 – RESNET Simplified Test Procedures

For purposes of this chapter, duct leakage may be measured by either pressurizing or depressurizing the duct system. Tests measure either total leakage or leakage to the outside. Total leakage includes all leaks in the air distribution system and leakage to the outside only refers to leaks to outside the conditioned space. The following text mentions only pressurization, but depressurization may also be used.

Testing of the duct system(s) of a building is accomplished by use of a duct leakage testing device and, when testing leakage to outside, a blower door. For total duct leakage, the duct leakage tester is attached and used to pressurize the duct system to 25 Pa. This test measures all duct leakage including leakage between the ducts and the conditioned space and leakage between the ducts and any unconditioned space or outside.

When performing a duct leakage to outside test, a blower door is also used to pressurize the building to 25 Pa while the duct leakage tester is used to equalize the pressure inside the duct system with the building pressure induced by the blower door (e.g. 25 Pa). Multiple blower doors may be used if the conditioned space can’t be uniformly pressurized with a single blower door (for example, a conditioned crawlspace). Because the ducts and the conditioned space of the building are theoretically at the same pressure, little or no air flows through leaks between the ducts and the conditioned space and the duct leakage tester only measures the leakage between the ducts and spaces outside the conditioned space. When ducts are entirely within the conditioned space boundary, 100% of the system is visible at the time of testing and the system is fully ducted (i.e., no building cavities are used to transport air) the ducts do not have to be tested and the ducts may be assumed to have no leakage to outside the conditioned space.

803.2.1 – Multifamily Buildings

For multifamily buildings where each unit has its own duct system, each unit may be tested individually using the procedures in this RESNET standard. Each unit should be treated as if it is a single family dwelling. The leakage to outside test is performed using a blower door in the main entry to the unit to pressurize the individual unit with reference to outside. If the main entry door is in an interior hallway then the hallway needs to be well connected to outside through open windows or doors or an exterior window or door (such as to deck or patio) may be used. Similarly, only the ducts in the unit under test are pressurized. For compliance testing, use measured leakage to outside. For energy audits or savings estimates, it may be assumed that the leakage to outside is one-half of this measured leakage. For compliance testing, the total leakage test method may be used instead of leakage to outside.

803.3 – Protocol for Preparing the Building and the Duct System for a Duct Leakage Test
(Items 803.3.1–803.3.8 are used for both Total and Outside Leakage tests)

803.3.1 Adjust the HVAC system controls so that the air handler fan does not turn on during the test.

803.3.2 Turn off any fans that could change the pressure in either the conditioned space or any spaces containing ducts or air handlers (bathroom fans, clothes dryers, kitchen vent hood, attic fan, etc.).

803.3.3 Turn off all vented combustion appliances if there is a possibility that the space containing the appliance will be depressurized during the test procedure.

803.3.4 Remove all filters from the duct system and air handler cabinet. If the duct leakage testing system is installed at a central return grille, also remove the filter from that grille.

803.3.5 Any intentional openings into the duct system such as combustion air or ventilation ducts shall be left in their normal non-ventilation operating position. Motorized dampers should be closed.

803.3.6 If ducts run through unconditioned spaces such as attics, garages or crawlspaces, open vents, access panels, doors, or windows between those spaces and the outside to eliminate pressure changes due to duct leakage during the test procedure.

803.3.7 Supply registers and return grilles shall be temporarily sealed in some manner so as to allow for the pressurization of the duct system.

803.3.8 Zone and bypass (not balancing) dampers shall be set to the open position to allow uniform pressures throughout the duct system.

 Total leakage test only: Fully open at least one door, window or comparable opening between the building and outside to prevent changes in building pressure when the duct leakage testing system is running.

 Leakage to the outside test only: All exterior doors and windows between the building and outside shall be closed, and other openings to the outside that may hinder the ability of a blower door fan to pressurize the building to 25 Pa with reference to outside should be closed or covered in some manner. Interior doors shall be open.

803.4 Installation of the Duct Leakage Testing System (used for both total leakage and leakage to outside tests)

803.4.1 Attach the duct leakage tester system to the largest return grille closest to the air handler. Use the manufacturer’s recommended installation procedure that is consistent with the mode (i.e., pressurization vs. depressurization) of the test being performed. Be sure the remaining opening in the return grille is temporarily sealed. When testing a duct system with 3 or more returns, installation of the duct leakage tester at the air handler cabinet may be a
better attachment location. Document the attachment location of the duct leakage testing system.

803.4.2 Select a location to measure duct pressure. Choose one of the following three locations to measure duct pressure:

The largest supply register closest to the air handler, or
The main supply trunk line, or
The supply plenum can be used if the duct leakage tester is installed at a central return.

Document the duct pressure measurement location.

803.4.3 Insert a pressure probe into the duct system at the chosen measurement location. If measuring at the supply trunk line or supply plenum, you must use a static pressure probe (be sure the probe is pointing into the air stream). If measuring at a supply register, you may use a static pressure probe, or you may simply insert a straight pressure probe or the end of a piece of flexible tubing.

803.4.4 Install the pressure gauge and tubing connections in accordance with the manufacturer's instructions and the test mode (pressurization vs. depressurization) being used. The duct system pressure should be measured with reference to the inside of the building. Turn on and configure the pressure gauge for the test procedure being performed.

803.5 Procedure for Conducting a Total Duct Leakage Test

803.5.1 Select the appropriate range (e.g., flow ring) of the duct leakage testing fan and configure the flow gauge to match the selected range.

803.5.2 Turn on the duct leakage testing fan and increase fan speed until the duct system has been pressurized to 25 Pa (+/- 0.5 Pa). Measure and record the duct pressure reading (0.1 Pa resolution) and the fan flow reading (1 CFM resolution) using a 5-second averaging period. Also record the fan configuration (range), fan and manometer models and serial numbers. Be sure the fan is being operated according to the manufacturer’s instructions.

If 25 Pa of duct pressure cannot be achieved because the duct testing fan does not have sufficient flow capacity, then achieve the highest duct pressure possible with the equipment available and record the values above.

Note: If your pressure gauge has the capability to adjust the fan flow value to a duct pressure of 25 Pa (i.e., @25 Pa feature), then follow the manufacturer’s procedures for conducting a one-point total leakage test, and record the following values: duct pressure, CFM25 (or fan flow in CFM and pressure in Pa if 25 Pa not achieved), fan configuration, fan and manometer models and serial numbers. If your gauge does not have an @25 feature and the measured duct pressure was not exactly 25 Pa, calculate and record

CFM25 as:

$$CFM_{25} = \frac{25 \text{ Pa}}{\text{duct pressure}}^{0.6} \times \text{fan flow}.$$

803.5.3 Turn off the duct testing fan.
803.6 Installation of the Blower Door System (used for leakage to outside test only)

803.6.1 Install the blower door system in an exterior doorway that has unrestricted access to the building and no obstructions to air flow within five feet of the fan inlet. The blower door fan should be installed in a configuration that is consistent with the mode of the duct leakage test (i.e. pressurization vs. depressurization).

803.6.2 Install the pressure gauge(s), fan and tubing connections as per manufacturer’s instructions.

803.7 Procedure for Conducting a Duct Leakage to Outside Test

803.7.1 With both the blower door and duct leakage fans sealed, measure the baseline building pressure with reference to outside using a 5-second averaging period.

803.7.2 Unseal the blower door fan. Turn on the blower door fan and pressurize the building by 25 Pa (+/- 0.5 Pa) from the measured baseline building pressure (i.e. change the building pressure by 25 Pa). Note: If your pressure gauge has the capability to display the induced building pressure (i.e. baseline adjustment feature), then follow the manufacturer’s procedures for pressurizing the building by 25 Pa.

803.7.3 With the blower door fan continuing to run, unseal the duct leakage testing fan and select the appropriate range on the duct leakage testing fan. Configure the duct leakage testing system gauge to match the selected range.

803.7.4 Turn on the duct leakage testing fan and increase fan speed until the duct system pressure reads 0.0 (+/- 0.1 Pa). Note: The duct system pressure should be measured with reference to the inside of the building.

803.7.5 Re-check the blower door pressure gauge and if necessary, re-adjust the blower door fan to maintain a 25 Pa pressurization. Note: If the blower door fan is being operated with a “cruise control” feature, it is not necessary to recheck the blower door pressure gauge.

803.7.6 Return to the duct leakage pressure gauge and if necessary, re-adjust the duct leakage testing fan until the duct system pressure reads 0.0.

803.7.7 Record the following values: building pressure, duct pressure, CFM of flow through the duct testing fan, duct testing fan configuration, duct testing fan and manometer models and serial numbers. Calculate and record \(\text{CFM}_{25} = \frac{25 \text{ Pa}}{\text{building pressure}} \times \text{duct leakage fan flow} \).

803.7.8 Turn off both the blower door and duct leakage testing fans.

Note: If the blower door system is unable to pressurize the building to 25 Pa because the blower door fan does not have sufficient flow capacity, then you will need to conduct the test at the
highest-achievable building pressure and adjust the measured duct leakage as described in step 803.7.7.

Note: If the duct testing fan was unable to create a pressure difference of zero between the duct system and the building (while the blower door is pressurizing the building to 25 Pa) because the duct testing fan does not have sufficient flow capacity, then the test will need to be performed at a lower building pressure and adjust the measured duct leakage as described in step 803.7.7.

803.8 Application of Results

803.8.1 The results of the total duct leakage test represent the total amount of duct leakage both to the inside and to the outside of the conditioned space and represent the overall leakage of the entire system. The total leakage may be of use in some programs where the total system duct leakage is required.

803.8.2 The duct leakage to the outside test is designed to measure only the duct leakage occurring to the outside of the conditioned space. Many programs use this measurement as the determining factor as to whether a duct system fails or passes.

803.8.3 If rating software requires separate input of supply and return leakage that have not individually been measured you shall assume that ½ of the total measured leakage is in the supply and ½ is in the return.

803.9 Equipment Accuracy and Requirements

Duct testing fans used for determining either total leakage or leakage to outside shall measure airflow with an accuracy of +/-5%. Pressure gauges shall measure pressure differences with a resolution of 0.1 Pa and have an accuracy of +/-1% of the reading or 0.5 Pa, whichever is greater.

Blower doors, duct testers, and associated pressure testing instruments shall be field-tested annually for calibration. The calibration procedure shall follow the equipment manufacturer’s recommendations.

The HERS Rating Provider or Certified Rater shall maintain a written log of the annual calibration check to verify all equipment accuracy for a period of three (3) years. These records shall be made available within 3 business days to the RESNET Quality Assurance Administrator upon request.

804 On-Site Inspection Procedure for Ventilation Airflow Testing

The purpose of these test procedures are to measure the air flows through whole house ventilation systems and local exhausts. The test procedures treat the air flows into and out of the grille being measured separately. The Air Flow Resistance method may only be used on systems that do not have multiple branches in the ventilation air duct system. Use of a manometer with manufacturer-installed calibrated ports (common on ERV/HRV equipment) is an acceptable method if the manufacturer’s instructions are followed.
804.1—Air Flows into Grilles

804.1.1—Powered Flow Hood

A powered flow hood consists of:

A flow capture device that is to be placed over the grille to be measured. The flow capture element needs to be large enough to cover the whole grille and be airtight.

A pressure measuring system inside the flow capture element that is designed and installed to measure the static pressure inside the flow capture element.

A manometer to measure the pressure difference between the inside of the flow capture element and the room.

An air flow meter to measure the air flow through the air flow capture element. The air flow meter shall measure airflow with an accuracy of +/- 5%.

A variable-speed fan to move air through the flow capture element and the flow meter.

804.1.1.1—Place the flow capture element over the grille to be measured.

804.1.1.2—Turn on the air flow assisting fan and adjust the airflow until zero pressure difference is measured between the flow capture element and the room.

804.1.1.3—Record the air flow through the air flow meter.

804.1.2—Air Flow Resistance

The Air Flow Resistance method measures the pressure difference across a flow capture element with a known air flow resistance. A rectangular user fabricated box can be used if the size of the hole is not greater than half the size of the box in each direction and the distance from the hole to the grille is at least as large as the larger dimension of the hole. User fabricated devices shall be approved by a provider prior to use.

804.1.2.1—Place the flow capture element over the grille to be measured. Ensure there is air tight seal around the grille and the flow device so that all of the air entering the grille goes through the device.

804.1.2.2—Measure the pressure difference (DP) between the flow capture element and the room at a corner of the inlet side of the box. The hole in the flow capture device should be sized so that the pressure difference is between 1 and 5 Pa.

804.1.2.3—Calculate the air flow using the manufacturer’s calibration of the air flow resistance device.

For user fabricated devices that do not have a manufacturer’s calibration, the following equations may be used to calculate the air flow.

\[
\text{Air Flow (cfm)} = \text{Open Area} \times 1.07 \times (\text{DP})^{0.5} \text{ for Area in in}^2, \text{ DP in Pa}
\]
Air Flow (L/s) = Open Area × 0.078 × (DP)^0.5, for Area in cm², DP in Pa

804.2 Air Flows Out of Grilles

804.2.1 Powered Flow Hood

The measurement procedure is the same as for air flow into grilles (Section 804.1.1) but with the fan and flow meter arranged to have flow out of the grille.

804.2.2 Bag Inflation

The Bag Inflation method requires the use of a bag of a known volume, a method to hold the bag open (typically a lightweight frame of wood, plastic or metal wire), a shutter to start the air flow and a stopwatch.

804.2.2.1 Completely empty the bag of air and place a shutter over its opening.

804.2.2.2 Rapidly withdraw the shutter and start the stopwatch.

804.2.2.3 When the bag is completely full stop the stopwatch.

804.2.2.4 Calculate the airflow by dividing the bag volume by the elapsed time. Calculate the air flow in cfm as 8 × bag volume in gallons/number of seconds

804.2.2.5 Repeat measurement one or more times and average the results.

804.2.2.6 How to Choose a Bag

Plastic thickness. Bags made from thinner material often do not fill uniformly because the air flow from the register blows them about too much. If the bag sides flap a lot and measuring the same register twice gives results that differ by more than 20%, then try a bag with thicker material.

Use the right sized bags. Bags that fill in under two seconds will have increased errors because of resolution issues in timing how fast the bag is filled. Conversely, bags that are too large for a given register flow will have increased leakage around the edges of the bag before it fills completely and may not generate enough pressure to push a bag into its final shape. Aim for a fill time of 2 to 20 seconds.

804.3 Equipment Accuracy Requirements and Specification

The manometer shall measure pressure differences with a resolution of 0.1 Pa and have an accuracy of +/- 1% of the reading or 0.5 Pa, whichever is greater.

8025 Combustion Safety Testing Procedure

8025.1 These protocols contained in ANSI/ACCA 12 QH-2014, Appendix A, Sections A4-A3 (Carbon Monoxide Test) and A45 (Depressurization Test for the Combustion Appliance Zone)
shall be followed by RESNET-accredited Raters and Auditors (hereinafter referred to collectively as “Auditors”) performing combustion appliance testing.

802.2 Prior to conducting any test that affects the operating pressures in the home, the Auditor shall inquire whether a person that has environmental sensitivities (asthma, allergies, chemical sensitivity, etc.) is present in the home. If such a person is present, the Auditor shall not perform such tests without written disclosure from the affected party (or responsible adult). The written disclosure shall state (at a minimum) that “during the period of testing, some amount of dust, particles, or soil gases already present in the home may become airborne.” Without a signed disclosure, the Auditor shall either reschedule the test for a time when they will not be present, or ask them to leave the home during the testing process. The Auditor shall also inquire as to the presence of pets that may potentially be affected by testing procedures.

806-802.3 Gas Leakage Test

8026.3.1 If there is a noticeable odor indicating gas buildup within the home, the occupants and Auditor shall leave the house and the appropriate authorities and utility providers shall be notified from outside the home.

8026.2-3.2 The Auditor should use a gas detector upon entry into the home to detect the presence of natural gas. If gas is suspected or confirmed, ensure that switches are not operated while exiting and no ignition concerns are present. The audit shall not proceed until the proper authorities have deemed it safe to re-enter the home. If there is no noticeable odor indicating gas buildup within the home, the Auditor shall determine if there are gas leaks in the fittings and connections of natural gas appliances within the home and natural gas/liquid propane supply lines following these protocols.

8026.3.3 Inspect all fittings and joints in supply lines and appliance connectors and confirm suspected leaks with leak-detection fluid. Identify for repair or replacement any kinked, corroded or visibly worn flexible gas lines and any flexible connectors manufactured prior to 1974.

8026.4-3.4 Equipment needed,

 802.3.4.1 Combustible gas detector capable of measuring 20 ppm
 802.3.4.2 Leak detection fluid (non-corrosive)

8037 Work Scope for Contractors

8037.1 Requirements

8037.1.1 All work must meet applicable codes and regulations for the jurisdiction.

8037.1.2 When air sealing is being performed the work scope shall specify CAZ depressurization testing to be performed at the end of each workday.
8037.1.3 The work scope for recommended improvements will be determined by the Auditor and shall be based upon the findings of the assessment, the client’s needs and budget, and priorities identified during combustion appliance testing, subject to health and safety requirements.

8037.1.4 The work scope shall clearly identify for the client any remedial actions which require prompt attention, affect safety, or require a licensed trade.

8037.1.5 The work scope shall provide sufficient specification that the client may obtain reasonably comparable bids from alternative sources for making recommended improvements.

8037.1.6 All scopes of work shall include this statement: “The estimated energy use and savings information contained in the audit report does not constitute a guarantee or warranty of actual energy cost or usage.”

8037.1.7 The work scope shall be developed based on the Auditor’s diagnosis and analysis. Emphasis shall be on:

- bringing air distribution system components inside the building enclosure when it is feasible, or sealing and insulating ducts when it is not;
- improving airflow and total HVAC system efficiency as applicable;
- upgrades to the building enclosure as applicable;
- improvements to lighting and appliances as applicable.

8037.1.8 The scopes shall reflect the “house as a system” approach, recognizing measure interaction. The following statement shall be included whenever a fireplace or combustion appliance is located within the building enclosure:

“This work scope is not a list of recommendations that may be implemented independently; any exclusions or variations to this scope may increase the risk of flue gas spillage, back-drafting, carbon monoxide production and/or moisture problems within the home.”

8037.1.9 When specifying equipment replacement, new equipment sizing shall be based on the proposed, upgraded condition of the building enclosure and duct system.

8037.1.10 The work scope shall call for post-work combustion appliance testing in accordance with these guidelines when any work affecting enclosure or duct tightness, or building pressures, is specified.

8037.2 Work Scope: Carbon Monoxide

8037.2.1 The source of the CO must be repaired or replaced and the problem corrected prior to commencing work on other tasks on the work scope, unless remediation of the CO production is specifically related to one or more of those tasks (such as duct repairs that will correct a large negative pressure in the CAZ).
If there are combustion appliances within the building envelope, a carbon monoxide detector should be specified in the main area of each floor according to manufacturer’s recommendations, typically in the hallway outside each bedroom area.

If measured CO levels are higher than 100 ppm (200 for oven), or an appliance fails to meet manufacturer’s specifications for CO production (whichever is higher), the work scope shall specify replacement or repair of the appliance, and the homeowner shall be notified of the need for service by a qualified technician.

Work Scope: Worst Case Depressurization

If the results of the Worst Case Depressurization Test indicate the potential for backdrafting by failing the CAZ pressure limits or spillage test, remediation of the failure must be addressed in the work scope, through one or more of the following (as applicable): targeted air- and duct-sealing, room pressure balancing, exhaust fan makeup air, or appliance replacement (with power- or direct-vented equipment). As an alternative, the combustion appliance zone may be isolated by creating a sealed combustion closet containing the combustion appliances that has the proper amount of combustion air supplied to it according to the applicable version of the IRC. Adequate sealing for isolation purposes shall include air sealing and duct sealing (especially of adjacent platform or cavity return ducts) and confirmed by another CAZ depressurization test.

The work scope should specify replacement of atmospheric-vented combustion appliances with high-efficiency sealed combustion, direct vent, or power vented appliances when feasible. If the home has unvented combustion appliances, the /Auditor shall recommend they be disconnected and replaced with vented combustion appliances.

If unvented combustion appliances are not removed or replaced with vented combustion appliances or electric appliances, the work scope shall not specify measures that affect the air tightness of the envelope, including air sealing, duct sealing, sidewall insulation, or window replacements. Duct sealing outside the thermal envelope may be specified in IECC climate zones 1-3.

Referenced Standards

These referenced standards provide guidance for the Auditor in the performance of their role as an auditor or home energy rater (diagnostic testing, analysis, writing scopes of work).

48. 2 Contractor Work Scope Referenced Standards

These referenced standards should be referenced in the work scope, as applicable to provide guidance for the contractor to perform the work scope.

80.3 Sample Work Scope Form

(This is informative and does not contain requirements necessary for conformance to these guidelines.)

Work Scope for ________________________________

All work will be performed according to the following checked standards:

This work scope is not a list of recommendations that may be implemented independently; any exclusion to this scope may increase the risk of flue gas spillage, back-drafting, carbon monoxide production or moisture problems within the home.

What qualifications are required from contractors/technicians conducting the work:

What work needs to be performed:

Where the work needs to be performed:

How the work is to be performed (referenced Standard(s)):
Chapter 9- RESNET NATIONAL STANDARD FOR QUALITY ASSURANCE

903 Quality Assurance Requirements for QA Providers

903.4 Quality Assurance of Raters and Ratings

903.4.2 Quality assurance field review (QA field review).

903.4.2.4 Each home selected for a QA field review for each Rater shall be randomly selected from as many different builders and communities as possible. Special effort should be taken to make certain that the selected homes are as representative as possible of the homes being rated, i.e. new and existing homes, geographic location, builder, trade contractor, variety of floor plans, etc., which, in some instances, may require more than the minimum (1) home or one percent (1%).

903.4.2.4.1 For multifamily projects, when selected, field QA shall include a comprehensive inspection of all minimum rated features that are possible to be inspected within the selected units and within the building during the time of the field QA. This means that the QAD shall inspect attic insulation via a common attic access where present, mechanical rooms that house common mechanical systems that serve multiple units, common ventilation systems, etc.

903.4.2.4.2 If the annual rating volume of a Rater is such that more than one field QA is required for that annual period’s field QA quota (i.e. the Rater completed more than 100 ratings during the annual period), no more than one field QA within a particular multifamily development shall count toward meeting the total field QA quota.

903.4.2.4.2.1 An exception would be allowed if a particular multifamily development contained more than 100 units. In such an instance, one field QA per every 100 units of that development shall count towards the annual field QA quota.

903.4.2.4.2.2 Another exception would be allowed if the Rater had one or more Rating Field Inspectors (RFI) who worked with them throughout the annual period, in which case the QAD may select multiple units within a particular multifamily development to count towards the annual field QA quota for each RFI as long as those additional field QAs represent work performed by each individual RFI during the annual period.

903.4.2.4.2.3 If units within a multifamily building have multiple space conditioning configurations such that some units have ducts and other units do not, the QAD shall choose a unit with ducts for field QA. Alternatively, if the building has some units with ducts that are within Conditioned Space Volume while others have ducts that are within Unconditioned Space Volume outside of the building envelope, the QAD shall choose a unit with ducts that are within Unconditioned Space Volume outside of the envelope for field QA.
Appendix A - ON-SITE INSPECTION PROCEDURES FOR MINIMUM RATED FEATURES

A-1 Building Element: Foundation

A-1.1 Rated Feature: Conditioning of space

A-1.1.1 Task: Determine whether a crawl space or basement is a Conditioned Space Volume or an Unconditioned Space Volume, indirectly conditioned or directly conditioned.

A-1.1.1.1 On-Site Inspection Protocol:

To determine whether a crawl space or basement is Conditioned Space Volume, assess whether it meets the definition of Conditioned Space Volume in Appendix B.

A vented crawl space is considered unconditioned regardless of the location or existence of insulation. This is because the ambient temperature of the crawl space is close to the outdoor ambient temperature.

To determine whether a crawl space or basement is Unconditioned Space Volume, assess whether it meets the definition of Unconditioned Space Volume in Appendix B. An unvented crawl space or basement may be considered either unconditioned, indirectly conditioned, or fully conditioned, based on the following criteria:

Unconditioned: Foundation walls are not insulated, floor/ceiling assembly is insulated, and any heating or plumbing distribution systems in the space is insulated. The intention in an unconditioned crawl space or basement is to minimize the heating system losses into the space by means of the distribution and plumbing insulation, and to minimize heat flow through the insulated floor/ceiling assembly.
Conditioned, indirectly—Foundation walls are not insulated with floor/ceiling assembly insulated and distribution system in the space uninsulated, or foundation walls insulated with floor ceiling assembly insulated or non-insulated and distribution system uninsulated. In an indirectly conditioned crawl space or basement, heating or cooling is unintentionally delivered to the space either through the floor/ceiling assembly or by unintentional losses from the heating/cooling system. Indirectly conditioned spaces are typically between the temperature of the outdoor ambient temperature and the indoor conditioned space temperature.

Conditioned, directly—Foundation walls insulated or uninsulated and basement or crawl space is intentionally or unintentionally conditioned, by means of a forced air heating or cooling system, hydronic heat, electric resistance, etc. Fully conditioned spaces are typically maintained at the same temperature as the above grade spaces. The distinction between indirectly and directly conditioned basement spaces may be difficult, but is important from a heat transfer perspective. Rater judgment will have to be utilized in many cases. Interview the owner about the temperature in the basement during the heating season, and assess the potential for standby loss from the heating equipment and distribution system, e.g., jacket insulation, leakiness of ducts, insulation on distribution systems, etc.

A-4 Building Element: Walls

A-4.6 Rated Feature: Location

A-4.6.1 Task: Determine whether walls border exterior space, attic, garage or crawl space

A-4.6.1.1 On-Site Inspection Protocol:

Wall to exterior -Walls border exterior space.

Wall to enclosed Unconditioned Space Volume -Walls that border unconditioned attics, garages and crawl spaces.
A-4.7 Rated Feature: Surface area

A-4.7.1 Task: Determine surface area of all walls exposed to Unconditioned Space Volume

A-4.7.1.1 On-Site Inspection Protocol:

Measure linear perimeter of the walls to the nearest ½ foot. Measure the interior wall height of the walls to the nearest 1/4 foot. Use these measurements to calculate surface area.

A-4.8 Rated Feature: Thermal mass

A-4.8.1 Task: Determine type and thickness of all mass walls

A-4.8.1.1 On-Site Inspection Protocol:

If the dwelling’s walls are constructed of concrete, masonry or brick, determine their type and thickness.

Solid concrete walls (poured): Measure the thickness of the poured concrete wall in inches.

Concrete Masonry Unit: Cinder block or uninsulated concrete wall - hollow in the middle. May contain vermiculite or perlite insulation. Check for additional insulation (interior furring, foam board, foam fill). Measure the thickness of the wall in inches.

A-5 Building Element: Roof/Ceiling

A-5.1 Rated Feature: All ceiling areas between Conditioned and Unconditioned Space Volumes

A-5.1.1 Task: Obtain measurements of all ceiling areas

A-9 Building Element: Air leakage

A-9.1 Rated Feature: Blower door test

A-9.1.1 Task: Determine effective leakage area from a blower door test

A-9.1.1.1 On-Site Inspection Protocol:
The testing protocol described in ANSI/RESNET/ICC 380-2016 shall be used, in ASHRAE Standard 119 Section 5.1, with the modifications described below:

The following protocol shall be followed in preparing the building envelope for testing:

1. Leave all supply registers and return grills open and uncovered.
2. Leave all bathroom and kitchen fans open (i.e., in their normal operating condition). Only a permanently installed back draft damper in its normal condition may impede the flow of air.
3. Leave any combustion air ducts or louvers to the exterior open. (If a homeowner or builder has sealed them off, open them for the test.)
4. Leave any make-up air ducts with in-line dampers (e.g., for large kitchen exhaust fans or combustion air) as is (unsealed). Only a permanently installed back draft damper or motorized damper, in its normal condition may impede the flow of air.
5. Leave the dryer vent as is, whether or not the dryer is in place during the test. Only a permanently installed back draft damper in its normal condition may impede the flow of air.
6. Leave open any outside air duct supplying fresh air for intermittent ventilation systems (including a central fan-integrated distribution system).
7. Operable crawl-space vents, where present, are to be left in the open position.
8. Open all interior doors within the conditioned space, including doors to conditioned basements. (Closet doors may be left closed unless the closet contains windows or access to the attic or crawl space).
9. Leave louvered openings of a whole-house fan as is. (If there is a seasonal cover in place during the test, leave it in place.)
10. Close all doors to the exterior or unconditioned spaces; if any door to the exterior or unconditioned space lacks weather-stripping at testing time, it can be temporarily taped off.
11. Close and latch all windows.
13. Either seal or fill with water plumbing drains with p-traps that may be empty.
14. Seal off exterior duct openings to continuously operating fresh-air or exhaust-air ventilation systems (preferably at the exterior envelope).
15. Close any adjustable window trickle ventilators and/or adjustable through-the-wall vents.
16. If an evaporative cooler has been supplied with a device used to seal openings to the exterior during the winter, that device should be installed for the test.

Use the testing protocol described in ASHRAE Standard 119 Section 5.1. Blower door and associated pressure testing instruments, which include but are not limited to hoses, and Manometers, gauges and fans shall be field tested annually for calibration by the HERS provider or rater. The provider shall use a standard
for field testing of calibration provided by the equipment manufacturer. Magnehelic Gauges cannot be field tested and shall be re-calibrated by the Blower Door manufacturer annually. Field check the fan and flow measuring systems for defects and maintain them according to manufacturers recommendations.

The HERS provider shall maintain a written log of the annual calibration check to verify all equipment accuracy for a period of three (3) years. These records shall be made available within 24 hours to a RESNET Quality Assurance Committee member upon request.

It is recommended all pressure equipment be field checked for calibration more frequently than is required in these standards, i.e., monthly, quarterly, etc.

A-9.2 Rated Feature: Conditioned volume of space

A-9.2.1 Task: Determine conditioned volume of space

A-9.2.1.1 On-Site Inspection Protocol:

Determine conditioned-Conditioned Space Volume and indirectly-Unconditioned Space Volume of space—using definitions in Appendix B by multiplying conditioned floor area by ceiling height. The house may need to be split into different spaces with different ceiling heights and added to each other—both conditioned and indirectly conditioned spaces. For areas with vaulted ceilings, volume must be calculated geometrically.

A-9.3 Rated Feature: Estimate

A-9.3.1 Task: If diagnostic equipment is not used, determine window type and distribution system to estimate leakage

A-9.3.1.1 On-Site Inspection Protocol:

To be determined.

A-9.4 Rated Feature: Tracer gas test

A-9.4.1 Task:

A-9.4.1.1 On-Site Inspection Protocol:

To be determined.

A-10 Building Element: Heating & Cooling/Distribution System

A-10.1 Rated Feature: Air leakage (ducts)

A-10.1.1 Task: Determine air leakage from ducts

A-10.1.1.1 On-Site Inspection Protocol:

The testing protocol contained in ANSI/RESNET/ICC 380-2016 shall be used. The application of ASHRAE Standard 152 for testing of ducted distribution systems shall be implemented with the following additions and exceptions:
Air Handler Fan Flow Measurement using either of the methods specified in Annex A of the standard is preferred. If such measurement is not made, default values of 275 CFM per 12,000 BTU/hour of nominal HVAC capacity shall be used. For fossil-fired furnace systems, a default value of 200 CFM for every 12,000 BTU/hour of nominal furnace capacity shall be used for heating.

Supply and return leakage may be determined by measuring the leakage of each side as in Annex B, or as an alternate the leakage of the entire system may be measured, with the duct pressurization device in the return and the duct-pressure probe in the supply side. The ratio of supply side leakage to return side leakage $Q_{25,s}$ to $Q_{25,r}$ shall be selected separately for heating and cooling based on a worst case determination. The supply side of the system shall be assigned 67% of the leakage and the return shall be assigned 33%, and the overall distribution efficiency determined; then the efficiency with the reverse conditions (67% return and 33% supply) shall be determined, and the lower of the two efficiencies will be applied.

Total leakage (Annex C). The limitation of applicability of Annex C (Section C1) to leakage measurement of 10% or less of air handler air flow shall be based on tested air flow or default air flow, as appropriate according to (1) above. The calculations of 2.5% of air flow in Section C1.1, 2, and 3 shall use tested air flow, or nominal air flow of 400 CFM per ton. If the register grilles are not installed during the test (C1.2), the 2.5% of fan flow added to the measured leakage may be waived, on condition that a visual inspection, verifying effective sealing of register boot-to-drywall and/or boot-to-subfloor connections, is conducted prior to issuing the final rating.

A-10.2 Rated Feature: Insulation

A-10.2.1 Task: Determine the value of distribution system insulation

A-10.2.1.1 On-Site Inspection Protocol:

Air ducts may be insulated with insulation blankets or rigid insulation board. Inspect the duct or pipe insulation for R-value labeling (printed on the insulation by the manufacturer). If the insulation is not marked with the R-value, identify type and measure the thickness of the insulation to determine R-value. Check for internal insulation by tapping on the exterior and listening to the sound.

A-10.3 Rated Feature: Location of air ducts

A-10.3.1 Task: Determine the location of ducts

A-10.3.1.1 On-Site Inspection Protocol:

Air ducts may be located in the attic, crawl space, basement or in another Conditioned or Unconditioned Space Volume conditioned area. You must locate and differentiate between supply and return ducts. Ducts may be located in more than one space area (e.g., some return ducts in attic and some in conditioned space, etc.).
A-13.7 Rated Feature: System type

A-13.7.1 Task: Determine type of solar systems

A-13.7.1.1 On-Site Inspection Protocol:

Identify whether a solar domestic hot water system exists. These systems collect and store solar thermal energy for domestic water heating applications. If a solar water heating system exists, determine system type. For systems manufactured after Jan. 1, 1995, system type, energy factor (EF), and other performance characteristics shall be determined from the SRCC label (usually affixed to the solar storage tank) and by referring to SRCC literature. For systems lacking an SRCC label, energy factor and other performance characteristics can be determined using a certified HERS modeling tool, or appropriate default values. Identify as passive or active. Base your evaluation on these criteria:

Passive - No purchased electrical energy is required for recirculating water through a passive solar collector. Three types of passive systems are integrated collector storage (ICS), thermosiphon systems and self-pumped systems.

Integrated Collector Storage (ICS) - consists of a single unit which incorporates both collector and water storage. An example is the common “bread box” design. Storage is usually outside the Cconditioned Sspace Volume.

Thermosiphon - consists of a flat-plate solar collector and hot water storage tank. Instead of using a pump, circulation of the fluid is achieved by natural convection action. The storage tank must be located above the collector, and is usually outside the Cconditioned Sspace Volume.

Self-pumped - circulates fluid from storage to collectors without purchased electrical energy. Photovoltaic and percolating systems are examples of self-pumped systems. The storage tank is usually inside the Cconditioned Sspace Volume.

Active - Also known as pumped systems.

Pumped - purchased electrical energy input is required for operation of pumps or other components. The storage tank is usually inside the Cconditioned Sspace Volume.

Appendix B- Glossary of Terms

Glossary of Terms

Air Exfiltration

Air from the Cconditioned Sspace Volume leaking outside of the thermal boundary of a structure.
Air Infiltration
Air from outside the thermal boundary of a structure, which enters the conditioned space volume.

Building Envelope
The components of a building (walls, ceilings, windows, doors, floors, and foundations) that separate the conditioned space volume from the unconditioned space volume or conditioned space volume from outside.

Conditioned Floor Area (CFA)
The floor area of the Conditioned Space Volume within a building, minus the floor area of attics, floor cavities, crawlspaces, and basements below air sealed and insulated floors. The following specific spaces are addressed to ensure consistent application of this definition:
- The floor area of a wall cavity that is Conditioned Space Volume shall be included.
- The floor area of a basement shall only be included if the party conducting evaluations has either:
 - Obtained an ACCA Manual J, S, and either B or D report and verified that both the heating and cooling equipment and distribution system are designed to offset the entire design load of the volume, or,
 - Verified through visual inspection that both the heating and cooling equipment and distribution system serve the volume and, in the judgment of the party conducting evaluations, are capable of maintaining the heating and cooling temperatures specified by the Thermostat section in Table 4.2.2(1) of ANSI/RESNET/ICC 301-2104.
- The floor area of a garage shall be excluded, even when it is conditioned.
- The floor area of a thermally isolated sunroom shall be excluded.
- The floor area of an attic shall be excluded, even when it is Conditioned Space Volume.
- The floor area of a floor cavity shall be excluded, even when it is Conditioned Space Volume.
- The floor area of a crawlspace shall be excluded, even when it is Conditioned Space Volume.

Conditioned Space Volume
The volume within a building serviced by a space heating or cooling system designed to maintain space conditions at 78 °F (26 °C) for cooling and 68 °F (20 °C) for heating. The following specific spaces are addressed to ensure consistent application of this definition:
- If the volume both above and below a floor cavity meets this definition, then the volume of the floor cavity shall also be included. Otherwise the volume of the floor cavity shall be excluded.
- If the volume of one or both of the spaces horizontally adjacent to a wall cavity meets this definition, then the volume of the wall cavity shall also be included. Otherwise, the volume of the wall cavity shall be excluded.
The volume of an attic that is not air sealed and insulated at the roof deck shall be excluded.

The volume of a vented crawlspace shall be excluded.

The volume of a garage shall be excluded, even when it is conditioned.

The volume of a thermally isolated sunroom shall be excluded.

The volume of an attic that is air sealed and insulated at the roof deck or an unvented crawlspace shall only be included if the party conducting evaluations has obtained an ACCA Manual J, S, and either B or D report and verified that both the heating and cooling equipment and distribution system are designed to offset the entire design load of the volume.

The volume of a basement shall only be included if the party conducting evaluations has either:

- Obtained an ACCA Manual J, S, and either B or D report and verified that both the heating and cooling equipment and distribution system are designed to offset the entire design load of the volume, or,
- Verified through visual inspection that both the heating and cooling equipment and distribution system serve the volume and, in the judgment of the party conducting evaluations, are capable of maintaining the heating and cooling temperatures specified by the Thermostat section in Table 4.2.2(1) of ANSI/RESNET/ICC 301-2014.

Conditioned Space

Any directly conditioned space or indirectly conditioned space, as defined in this standard.

Conditioned Space Boundary

The continuous planes of the building envelope that comprise the primary thermal and air flow barrier between the directly or indirectly conditioned space and either the outdoors or an adjacent unconditioned space.

Confirmed Rating

A Rating accomplished using data gathered from verification of all rated features of the home in accordance with Chapter 3- National Home Energy Rating Technical Standards and ANSI/RESNET/ICC 380-2016 and Chapter 8 of this Standard (e.g., on-site visual inspections, on-site diagnostic test results or default values for envelope air leakage rates and distribution system efficiencies).

Indirectly Conditioned Space

A space within a building that is not directly conditioned, but meets one of the following criteria: (1) the area-weighted U-factor of the boundary between it and directly conditioned space exceeds that of the boundary between it and the outdoors or the ground, where \(U = \text{sum} \left(\frac{UA}{A} \right) \); (2) air to or from directly conditioned spaces is mechanically transferred at a rate exceeding 3 air changes per hour; or (3) any unvented basement or crawl space that contains heating equipment or distribution systems, and for which 50% or more of the floor separating it from conditioned space has no thermal insulation installed.

Infiltration Volume

The sum of the Conditioned Space Volume and Unconditioned Space Volume in the dwelling unit, minus the volume of:

- Floor cavities that have Unconditioned Space Volume both above and below,
• Unconditioned wall cavities.
• Attics,
• Vented Crawlspace,
• Garages,
• Basements, where the door between the basement and Conditioned Space Volume is closed during enclosure air leakage testing, and,
• Thermally isolated sunrooms.

Thermal Boundary Wall

Any wall that separates directly or indirectly conditioned space from unconditioned space or ambient conditions.

Thermal Boundary Wall (Above-Grade)

Any thermal boundary wall, or portion of such wall, not in contact with soil.

Unconditioned Space Volume

The volume within a building that is not Conditioned Space Volume but which contains heat sources or sinks that influence the temperature of the area or room. The following specific spaces are addressed to ensure consistent application of this definition:

• The volume of a floor cavity shall be included, unless the volume both above and below the floor cavity meets the definition of Conditioned Space Volume.
• The volume of a wall cavity shall be included, unless the wall cavity meets the definition of Conditioned Space Volume.
• The volume of a vented attic shall be included.
• The volume of a vented crawlspace shall be included.
• The volume of a garage shall be included, even when it is conditioned.
• The volume of a thermally isolated sunroom shall be included.
• The volume of an attic sealed and insulated at the roof deck, an unvented crawlspace, or a basement shall be included unless it meets the definition of Conditioned Space Volume.

Unconditioned Space

Any enclosed space within a building that is neither directly nor indirectly conditioned.