How to Verify Key Components of Heating & AC Systems in ENERGY STAR Certified Homes February 28, 2013 RESNET Conference Rick Gazica, ICF International; Brett Dillon, IBS Advisors, LLC ### Agenda - Value of quality-installed heating & cooling systems. - Overview of Sections 1-4 of the HVAC System QI Rater Checklist. - Critical details of Sections 1-4. - Q&A. ## Value of Quality-Installed Heating & Cooling Systems Heating, Cooling, & Ventilation System - Heating and cooling equipment that is: - High efficiency - Properly designed and installed - Combined with a duct system that's insulated, sealed, and balanced ... maintains comfort with less energy. Adding & removing Btu's impacts the temp. inside the home. 105F - You can't have a complete HVAC system until you first have a complete thermal enclosure system. - The amount of heat transfer can be quantified in British Thermal Units (Btu's). - 1 Btu is approximately equal to the energy in a single match. Adding & removing Btu's impacts the temp. inside the home. ## Three major steps to design an HVAC system 1) Calculate the heating & cooling load. 2) Select equipment to meet those loads. 3) Design ducts to get air from equipment to rooms, and then back to equipment, to offset loads. ## Step 1: Calculate heating & cooling loads Cooling load is the maximum Btu's added in one hour. ## Step 1: Calculate heating & cooling loads Heating load is the maximum Btu's lost in one hour. ## Step 2: Select equipment that meets loads Select equipment that removes Btu's to meet cooling load. ## Step 2: Select equipment that meets loads Select equipment which adds Btu's to meet heating load. ### Step 3: ### Design the duct system Design ducts to properly distribute air through house. This offsets the loads. ## Value of quality-installed Heating & cooling systems Two components of a complete system: Proper design ## Overview of Sections 1-4 of the Checklist ## Section 1: Review of HVAC System QI Contractor Checklist - 1) Collect design documentation for record-keeping. - 2) Review design parameters to see if they match rated home. - 3) Visually verify that equipment matches what was specified. - 4) Check data from HVAC contractor's commissioning process. - 5) Check if contractor holds required credentials. ## Item 1.2.5: Window area • Window area is within ±10% of calculated window area of rated home. ## Section 2: Duct quality installation - Visual inspection of duct installation. - Review of quantity and location of duct terminations. - Bedroom pressure balancing. ### Section 3 & 4: Duct insulation & leakage - Minimum insulation values for ductwork in unconditioned space. - Maximum allowable total duct leakage levels and to outdoors. ## Section 1 through 4: Summary - Oversight of key features of the design process. - Inspection of duct installation quality. - Verification of duct insulation and leakage levels. ## Critical Details of the HVAC System QI Rater Checklist ### Item 1.1: ### **Collection of required documentation** Required documentation includes Checklist, ventilation system design, load calculations, & AHRI certificate. ### Item 1.2: ### Review of contractor checklist & equipment | HVAC System Quality Installation Rater Chec | :klist 1 | | | |--|-------------------------------|-------------------------|-----| | Home Address: City: | | State: | | | 1. Review of HVAC System Quality Installation Contractor Checklist ² | Must
Correct | Rater
Verified | N/A | | 1.1 HVAC System Quality Installation Contractor Checklist completed in its entirety and collected for records, | | | | | 1.2 Review the following parameters related to system cooling design, selection, and installation from the HVAC Co.
(Contractor Checklist Item# indicated in parenthesis): ³ | ntractor Ch | ecklist | | | 1.2.1 Outdoor design temperatures (2.4) are equal to the 1% and 99% ACCA Manual J design temperatures
for contractor-designated design location 4 | | | | | 1.2.2 Home orientation (2.5) matches orientation of rated home | | | | | 1.2.3 Number of occupants (2.6) equals number of occupants in rated home ⁶ | | | | | 1.2.4 Conditioned floor area (2.7) is within ±10% of conditioned floor area of rated home | | | | | 1.2.5 Window area (2.8) is within ±10% of calculated window area of rated home | | | | | 1.2.6 Predominant window SHGC (2.9) is within 0.1 of predominant value in rated home ⁶ | | | | | 1.2.7 Listed latent cooling capacity (3.8) exceeds design latent heat gain (2.12) | | | | | 1.2.8 Listed sensible cooling capacity (3.9) exceeds design sensible heat gain (2.13) | | | | | 1.2.9 Listed total cooling capacity (3.10) is 95-115% (or 95-125% for Heat Pumps in Climate Zones 4-8) of
design total heat gain (2.14), or next nominal size 7 | | | | | 1.2.10 HVAC manufacturer and model numbers on installed equipment, Contractor Checklist (3.1, 3.2, 5.1), and AHRI certificate or OEM catalog data all match ⁸ | | | | | 1.2.11 Using reported liquid line (6.3) or suction line (6.5) pressure, corresponding temperature (as determined using pressure / temperature chart for refrigerant type) matches reported condenser (7.1) or evaporator (7.5) saturation temperature (± 3 degrees) ⁹ | | | | | 1.2.12 Calculated subcooling (7.1 minus 6.4) value is within ±3 °F of the reported target temperature (7.3) or calculated superheat (6.6 minus 7.5) value is within ±5 °F of the reported target temperature (7.7).9 | | | | | 1.3 Rater-venified supply & return duct static pressure ≤ 110% of contractor values (9.3, 9.4) | | | | | 1.4 Contractor-prepared balancing report indicating the room name and design airflow for each supply and return re
for records. In addition, final individual room airflows measured and documented on balancing report through one of | gister colle
the following | cted by Rating options: | ter | | 1.4.1 Measured and documented by contractor (10.1.1), OR; | | | | | 1.4.2 Measured by Rater using Section 804.2 of the Mortgage Industry National HERS Standard, documented
by Rater, & verified by Rater to be within the greater of ± 20% or 25 CFM of design airflow (10.1.2) | | | | | 1.5 HVAC contractor holds credentials necessary to complete the HVAC System QI Contractor Checklist 10 | | | | ### Item 1.2.1: ### **Review of contractor checklist** - Verify outdoor design temperatures equal 1% and 99% ACCA Manual J design temperatures for selected location. - These design temperatures are available on EPA's website: http://www.energystar.gov/ia/partners/bldrs lenders raters/d ownloads/Outdoor Design Conditions 508.pdf?7cdb-8623 | | Dry Bulb Design Temperature | | | |--------------|-----------------------------|--------------------------|--| | Location | Winter /
Heating / 99% | Summer /
Cooling / 1% | | | Richmond, VA | 18 F | 92 F | | ### Item 1.2.2 through 1.2.6: Review of contractor checklist - Verify that the following parameters used in the load calculation match the rated home: - Home orientation - Number of occupants - Conditioned floor area (±10%) - Window area (±10%) - SHGC (±0.1 SHGC value) - Use the tolerances provided to make compliance easier. Example of Acceptable Floor Area | -10% | Design | + 10% | |-------|--------|-------| | 1,980 | 2,200 | 2,420 | ## Item 1.2.2 through 1.2.6: Review of contractor checklist | 2.4 Outdoor Design Temperatures: Location: Baltimore 1%: 25 °F 99%: 93 °F | | | | | | | | |---|-------------------------------|--|--|--|--|--|--| | 2.5 Orientation of Rated Home (e.g., North, South): | North | | | | | | | | 2.6 Number of Occupants Served by System: 10 | 5 | | | | | | | | 2.7 Conditioned Floor Area in Rated Home: | 3200 S Ft. | | | | | | | | 2.8 Window Area in Rated Home: | 450 | | | | | | | | 2.9 Predominant Window SHGC in Rated Home: 11 | .20 | | | | | | | | 2.10 Infiltration Rate in Rated Home: 12 | Summer: .3 ACH Winter: .3 ACH | | | | | | | | 2.11 Mechanical Ventilation Rate in Rated Home: | 90 CFM | | | | | | | | 2.12 Design Latent Heat Gain: | 9600 BTO | | | | | | | | 2.13 Design Sensible Heat Gain: | 38400 BTM | | | | | | | | 2.14 Design Total Heat Gain: | 48000 BT | | | | | | | | 2.15 Design Total Heat Loss: | 31000 BTU | | | | | | | | 2.16 Design Airflow: 13 | 1600 CFN | | | | | | | | 2.17 Design Duct Static Pressure: 14 | _6 In. Wer Column | | | | | | | | 2.18 Full Load Calculations Report Attached 15 | | | | | | | | | 3. Selected Cooling Equipment, If Cooling Equipment to be Installed | | | | | | | | | 3.1 Condenser Manufacturer & Model: | <u>Carrier</u> | | | | | | | | 3.2 Evaporator / Fan Coil Manufacturer & Model: | 34ChX4i014 | | | | | | | | 3.3 AHRI Reference #: ¹⁸ | 879313 | | | | | | | | 3.4 Listed Efficiency: | <u>13 _ EER _16 SEER</u> | | | | | | | ## Item 1.2.10: Checking installed equipment HVAC manufacturer & model numbers on installed equipment, Contractor Checklist, & AHRI certificate match. Equipment selected during design: **Model ABC** Equipment actually installed in home: Model 123 ### Item 1.2.11 & 1.2.12: Review of contractor checklist - The Rater completes two simple math calculations to help ensure that the equipment has the right amount of refrigerant. - Even though these Items just require some simple math, it helps to understand the concepts behind them. #### Step 1: Metering Device The metering device controls how much refrigerant is released to the evaporator inside the home ### **Refrigerant Tests & Calculations** #### Step 2: Evaporator The refrigerant flows through the evaporator or cooling coil in the air handler unit, transferring heat between the air and the #### Step 3: Compressor The compressor is a small mechanical device that compresses the gas, raising its temperature ### Step 4: Condenser The condenser uses a fan to blow outdoor air across the refrigerant, removing heat, causing it to cool down and condense back into a liquid form Why is the amount of refrigerant so important to the operation of the A/C unit? - Keep temperatures within target ranges - Keep liquid out of gas side Consequences of improper charging: - Inefficient operation - Premature compressor failures ### Item 1.2.11 & 1.2.12: Review of contractor checklist - Two tests can be done to ensure proper amount of refrigerant: - Subcooling test: Ensures the refrigerant is in liquid form after it leaves the condenser. - Superheat test: Ensures the refrigerant is in gas form before it arrives at the compressor. ## Item 1.2.11 & 1.2.12: Review of contractor checklist <u>Subcooling</u> is the temperature of a fluid below its boiling point (liquid saturation temperature). ## Item 1.2.11 & 1.2.12: Review of contractor checklist • <u>Superheat</u> is the temperature of a fluid above its boiling point (liquid saturation temperature). ## Item 1.2.11: Review of contractor checklist - Verify that difference between <u>Rater-verified</u> and <u>contractor-reported</u> saturation temperature is ≤ 3°F. - A pressure temperature chart shows the saturation temperature of a specific liquid at a variety of pressures. | Temp. | R410A | | |-------|--------|--| | (F) | (psig) | | | 35 | 107 | | | 40 | 118 | | | 45 | 130 | | | 50 | 142 | | | 55 | 155 | | | 60 | 170 | | | 65 | 185 | | | 70 | 201 | | | 75 | 75 217 | | | 80 | 235 | | | 85 | 254 | | | 1) Contractor pressure | = 118 psig | |------------------------|------------| |------------------------|------------| 4) Difference in saturation temp. = 2 F ## Item 1.2.12: Review of contractor checklist Verify difference between <u>Rater-calculated</u> and <u>contractor-</u> <u>reported</u> target temp.: Subcooling is ≤ 3°F or Superheat is ≤ 5°F. #### Item 1.3: #### **Static pressure test** - Measure the static pressure of the supply duct system and the return duct system. - Use the same test hole locations as the contractor. - Watch the video of how the contractor does this at: http://www.energystar.gov/index.cfm?c=bldrs lenders raters.nh videos ### Item 1.4: Register airflow Sample Balancing Report | Room | Register | Design Airflow | Actual Airflow | Difference | |---------|----------|----------------|----------------|------------| | Hallway | 1 | 40 | 29 | 11 | | Hallway | 2 | 40 | 52 | 12 | | Room A | 1 | 80 | 76 | 4 | | Room A | 2 | 80 | 66 | 14 | | Room B | 1 | 80 | 95 | 15 | # Item 1.4: Register airflow - Methodologies for measuring airflow at registers: - ACCA QI 5 standard includes protocols for HVAC contractors (Section 5.2) - HERS Mortgage Industry National HERS Standards includes methods for Home Energy Raters to use (Section 804.2) ### Item 1.4: Register airflow • Items 2.1 through 2.4 focus on installation defects like kinks, bends, compression, and excessive ductwork. Compression Bends & Kinks **Sharp Bend** #### Item 4.1: #### **Total duct leakage** - Total duct leakage ≤ 8 CFM per 100 square feet of conditioned floor area. - More challenging to meet with building cavities as ducts. - Testing must occur at "final" when all components of the system are installed including the air handler, ductwork, duct boots and register grills atop the finished surfaces. - An additional test at "rough-in" is helpful to many partners, but is not mandatory. - Partners are permitted to seal both the face <u>and</u> the perimeter of the register when testing. - Sealing between duct boot & subsurface is critical. ### Item 4.1: Total duct leakage Using a building cavity for the return system makes it very challenging to meet the leakage limit. ## Item 4.1: #### **Total duct leakage** energy STAR - If the gap is big enough that your finger can fit in... - There might be an air leak. #### **Summary** - A complete thermal enclosure system is the first step towards a complete HVAC system. - HVAC design typically follows a three-step process: - 1. Calculate the loads. - 2. Select equipment to meet those loads. - Design a duct system from the equipment to the rooms, and back, to offset those loads. - Provided an overview and reviewed key details of Sections 1 through 4 of the HVAC System QI Rater Checklist. - These features help improve the efficiency and comfort of every certified home. #### Web: Main: <u>www.energystar.gov/newhomespartners</u> Technical: www.energystar.gov/newhomesguidelines Training: www.energystar.gov/newhomestraining HVAC: <u>www.energystar.gov/newhomesHVAC</u> #### **Email:** energystarhomes@energystar.gov #### **Social Media:** @energystarhomes facebook.com/energystar #### **Contacts:** #### **Dean Gamble** **US EPA** Technical Manager, **ENERGY STAR Certified Homes** gamble.dean@epa.gov #### **Rick Gazica** ICF International Account Manager, National Builder Support ENERGY STAR Certified Homes egazica@icfi.com